ACCESS Rack Manual

I. Introduction 11

- Applications 11
- Audio Coding 11
- Transmission Modes and Delay 11
- Switchboard Server 12
- CrossLock 12
- Additional Features 12
- HTML5 12

II. Diagrams and Installation 13

- Rear Panel Diagram and Descriptions 13
- Front Panel Diagram and Descriptions 14
- Mono vs. Stereo 14
- Pinouts - Balanced Audio 14
- Pinouts - Contact Closures 15
- Pinouts - Serial Port 15

III. Quick Start - Connections With ACCESS Rack 16

- More About Profiles 16
- Using The Console 16
Making Switchboard Connections
Receiving Incoming Connections

IV. Using The Device Manager Program

Updating Firmware Using Device Manager
Network Recovery Mode

V. Configuring ACCESS Rack

Login
Interface Page Sections
Connections Tab
Dashboard Tab
Performance Tab
Active Connections
Codec Channel Field
CrossLock Field
Packet Loss Graph
Utilization Graph
CrossLock Settings
Profile Manager Tab
Building a Profile
Profile Settings: Local & Remote Encoders
Advanced Local & Remote Options
System Settings Tab 33
Security Settings 34
Connections 34
Contact Closures 34
Switchboard Server 34
CrossLock VPN Settings 35
System Clock 35
Alternate Modes 35
Advanced System Settings 36
Security 36
Auxiliary Serial 36
Switchboard Server 37
CrossLock VPN Settings 37
BRIC Normal Settings 37
HTTP Settings 38
Modem 38
Standard RTP Settings 38
EBU3326/SIP Settings 39
TCP Settings 39
Miscellaneous 40

VI. Network Manager 41

Network Manager 41
VIII. Making CrossLock Connections On ACCESS Rack 46

How CrossLock Works: A Brief Overview 46
Multiple Network Setup 47
CrossLock Connections to MultiRack 48

VIII. Making Connections Via Switchboard 49

IX. Making Manual Connections 51

Creating New Remotes 51
Backup Remote 52
Connecting and Disconnecting 53
Special Notes for Manual CrossLock Connections 53

X. Setting Up Your Switchboard Account 54

Logging In and Setting Up Switchboard 54
Creating Users 55
Contact Lists 55
Following Contact Lists 56
XI. Operating ACCESS Rack In A 24/7 Environment 67

Always Connect To 67
Backup Remote 68

XII. POTS Connections 70

Pots Codec Setup for ACCESS Rack Compatibility 70
Using ACCESS Rack with POTS 70
Rate Drop vs. Retrain 70
Troubleshooting a POTS Connection 71

XIII. About The Algorithms 73

AAC 73
HE-AAC 73
HE-AACv2 73
Linear PCM* 73
FLAC* 74
G.722 74
Opus 74
ABOUT COMREX

Comrex has been building reliable, high-quality broadcast equipment since 1961. Our products are used daily in every part of the world by networks, stations and program producers.

Every product we manufacture has been carefully designed to function flawlessly, under the harshest conditions, over many years of use. Each unit we ship has been individually and thoroughly tested.

Comrex stands behind its products. We promise that if you call us for technical assistance, you will talk directly with someone who knows about the equipment and will do everything possible to help you.

You can contact Comrex by phone at 978-784-1776. Our toll-free number in North America is 1-800-237-1776. Product information along with engineering notes and user reports are available on our website www.comrex.com. Our email address is info@comrex.com.

WARRANTY AND DISCLAIMER

All equipment manufactured by Comrex Corporation is warranted by Comrex against defects in material and workmanship for one year from the date of original purchase, as verified by the return of the Warranty Registration Card. During the warranty period, we will repair or, at our option, replace at no charge a product that proves to be defective, provided you obtain return authorization from Comrex and return the product, shipping prepaid, to Comrex Corporation, 19 Pine Road, Devens, MA 01434 USA. For return authorization, contact Comrex at 978-784-1776 or fax 978-784-1717.

This Warranty does not apply if the product has been damaged by accident or misuse or as the result of service or modification performed by anyone other than Comrex Corporation.

With the exception of the warranties set forth above, Comrex Corporation makes no other warranties, expressed or implied or statutory, including but not limited to warranties of merchantability and fitness for a particular purpose, which are hereby expressly disclaimed. In no event shall Comrex Corporation have any liability for indirect, consequential or punitive damages resulting from the use of this product.
I. INTRODUCTION

Congratulations on purchasing the Comrex ACCESS Rackmount codec system with CrossLock technology. Since the ACCESS Rack was first introduced over a decade ago, it has become the world’s leading IP audio codec. Leveraging many of the core technical aspects of Comrex’s successful remote broadcast technology, the ACCESS Rack provides for an elegant way of moving linear or compressed audio with very low delay. The ACCESS Rack may be used over a range of IP links, is very simple to use, and maintains superb audio specifications and hardware reliability. These features make the ACCESS Rack an excellent option for STLs and other mission-critical functions.

APPLICATIONS

The ACCESS Rack is uniquely suited to point-to-point “nailed up” high-quality audio links over a variety of data networks, like ISM band IP radios, T1s, satellite channels, WANs, and LANs. The robustness of the BRIC Normal technology (Broadcast Reliable Internet Codec) used in the box allows the system to perform well on the public Internet as well (using AAC or Opus compression modes).

AUDIO CODING

For users concerned about delay and coding artifacts, the ACCESS Rack offers a robust stereo or mono Linear mode that does not compress audio. In addition, unique to real-time audio codecs, ACCESS Rack offers FLAC lossless compression, reducing network throughput by 30-40% with absolutely transparent coding and no tandem coding concerns. For situations where further reduced bandwidth is desired, ACCESS Rack offers AAC/HE-AAC modes as standard, allowing superb audio quality at dramatically reduced data rates. For compatibility with mobile phone and web applications, ACCESS Rack also implements Opus audio compression, along with VoIP standard G.722.

TRANSMISSION MODES AND DELAY

The ACCESS Rack is a true codec, offering a full-duplex stereo encoder and decoder in each unit. When two-way transmission is not required, the reverse channel may be disabled. The BRIC Normal technology incorporated includes a jitter buffer manager that automatically balances delay and stability, dynamically increasing and decreasing delay based on network performance. For networks where QoS is known, these parameters may be set to maintain a consistent level of jitter buffer.

End-to-end coding delay in Linear modes is less than 25 ms. Delays when using FLAC and Opus modes are less than 30 ms. AAC modes incorporate around 100 ms total end-to-end delay while HE-AAC modes deliver around 220 ms.

In addition to coding delay, network propagation and jitter buffers will add delay to any IP link and are network dependent.
SWITCHBOARD SERVER

Switchboard is a standard feature with ACCESS Rack that allows the codec to “sync” with Comrex’s cloud-based traversal server. Switchboard facilitates connections between codecs without any knowledge of IP addresses on either end of a link. Switchboard traversal server allows for monitoring presence and status information for all Comrex codecs in a user’s fleet, and assists with connections through routers and firewalls that might be difficult otherwise.

CROSSLOCK

ACCESS Rack comes with a reliability feature called CrossLock VPN. Comrex codecs running 4.x-level firmware and higher are compatible with CrossLock. This is a transport layer that adds the following features:

- Error Correction (ARQ and FEC);
- Dual Network support (Bonding and Redundancy modes);
- Enhanced statistics and diagnostics.

Use of CrossLock is optional, and requires a Comrex codec running 4.x-level firmware on each end of the link. CrossLock connections can be made via the Comrex Switchboard function (see previous section) or manually. For manual connections, CrossLock requires extra settings to assure connections are only made within your known group of codecs. 4.3-level firmware and higher also supports CrossLock when using very data-intensive algorithms like Linear PCM and FLAC.

Users running 4.3-level firmware or higher are also able to utilize HotSwap, which is a feature of CrossLock that allows users to designate one network in a CrossLock connection as primary and the other network as secondary in order to increase flexibility and avoid potentially expensive data overage charges.

ADDITIONAL FEATURES

HTML5

Previous firmware versions for Comrex codecs provided a web-based control page powered by Adobe Flash. As Flash has lessened in popularity and impedes operation on many mobile browsers, ACCESS Rack (and older Comrex products with new firmware) now delivers web-based control using the modern HTML5 standard.
II. ACCESS RACKMOUNT DIAGRAMS AND INSTALLATION

FIGURE 1 REAR PANEL DIAGRAM AND DESCRIPTIONS

1. **AC Input** - This is an IEC connector for the main power. ACCESS works on worldwide AC power at 110-240 VAC 50-60 Hz, auto detecting.

2. **Analog/AES3 Input Switch** - This switch determines whether the Line In Left/AES3 In XLR connector is used for analog or AES3 digital audio input.

3. **Analog Audio Input** - Apply balanced analog audio to be sent over the network here. Left channel is used for mono encoding modes. Level is set to 0 dBu (0.775 VRMS) nominal. Full scale input is +20 dBu

4. **Analog Audio Input** - Apply balanced analog audio to be sent over the network here. Level is set to 0 dBu (0.775 VRMS) nominal. Full scale input is +20 dBu

5. **Analog Audio Output** - Balanced analog audio is available at this port. Level is set to 0 dBu (0.775 VRMS). Full scale output is +20 dBu

6. **Analog Audio Output** - Balanced analog audio is available at this port. Level is set to 0 dBu (0.775 VRMS). Full scale output is +20 dBu

7. **AES3 Digital Audio Output** - A 48 kHz AES3 stereo signal is available here. AES3 output is available simultaneously with analog. When the AES3 Input is active, the AES3 Output will lock to the sampling rate and clock signal of the Input.

8. **VGA Output** - Attach a VGA computer monitor here to access the Console Connection Interface.

9. **USB Ports** - Available for use with USB keyboards and mice. Can also be used with supported 3G/4G USB wireless modems.

10. **HDMI Output** - Attach an HDMI cable to a monitor in order to access the Console Connection Interface.

11. **Ethernet Ports** - Two 10/100BaseT Ethernet ports (a Primary and a Secondary) for connection to your network.

12. **POTS/PSTN** - Attach an analog telephone line here for POTS codec compatibility.

13. **Serial Port** - Asynchronous ancillary data is available here.

14. **Reset** - This button will restart the Rack’s computer board.

15. **GPIO** - General Purpose Input/Output. Four sets of contact closure inputs and outputs that can be used to send signals to the far end of the link or to trigger remote control gear such as automation equipment.
Send - Peak meter that displays the level of audio being sent locally into the ACCESS, regardless of whether or not a connection is active. Proper level is indicated by peaks driving the Yellow LEDs, while avoiding lighting the Red LEDs (which indicates clipping).

Receive - Peak meter that displays the level of audio being sent remotely when a connection is active. Proper level is indicated by peaks driving the Yellow LEDs, while avoiding lighting the Red LEDs (which indicates clipping). Adjustments to this level must be made on the far end of the link.

Reset - Recessed button to send ACCESS into hardware reset mode. Approximately 30 seconds are required to reboot when this is pressed.

Status - Multi-color LED indicates state of device as follows:
- Red = Network unavailable
- Green = Connected to remote
- Yellow = Connected to remote but network not available (i.e., network connectivity lost during connection)
- Slow Red Blink = Software update in progress
- Fast Red Blink = Displaying unit IP address
- Off = Network ready, not connected to remote

MONO VS. STEREO

The ACCESS Rack uses its left channel input only for Mono Modes. The right channel is ignored. Output audio is available at both the left and right outputs in Mono Mode.

PINOUTS - BALANCED AUDIO

ACCESS audio connections are balanced professional level inputs and outputs:

<table>
<thead>
<tr>
<th>XLR Pinouts</th>
<th>AES3 Pinouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin 1</td>
<td>Ground</td>
</tr>
<tr>
<td>Pin 2</td>
<td>Audio +</td>
</tr>
<tr>
<td>Pin 3</td>
<td>Audio –</td>
</tr>
<tr>
<td>Pin 1</td>
<td>Ground</td>
</tr>
<tr>
<td>Pin 2</td>
<td>Data +</td>
</tr>
<tr>
<td>Pin 3</td>
<td>Data –</td>
</tr>
</tbody>
</table>
PINOUTS - CONTACT CLOSURES

Contact closures are available via the male 9-pin D connector on the back of the ACCESS Rack. Inputs are triggered by shorting the respective input to Pin 5. Outputs consist of an open collector circuit which, when inactive, will offer a high-impedance path to Pin 5 and, when active, will offer a low impedance path to Pin 5. These outputs are capable of sinking up to 200 mA at a voltage up to 12 V. Do not switch AC mains power using these contacts.

Contact Closure Pinouts

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Input #1</td>
</tr>
<tr>
<td>2</td>
<td>Input #2</td>
</tr>
<tr>
<td>3</td>
<td>Input #3</td>
</tr>
<tr>
<td>4</td>
<td>Input #4</td>
</tr>
<tr>
<td>5</td>
<td>Ground</td>
</tr>
<tr>
<td>6</td>
<td>Output #1</td>
</tr>
<tr>
<td>7</td>
<td>Output #2</td>
</tr>
<tr>
<td>8</td>
<td>Output #3</td>
</tr>
<tr>
<td>9</td>
<td>Output #4</td>
</tr>
</tbody>
</table>

PINOUTS - SERIAL PORT

The Serial Port is capable of transferring ancillary data to the far end of the connection. By default, the communication parameters are set for 9600 bps, no handshaking, no parity, 8 data bits, one stop bit (9600,n,8,1). It is pinned on a 9-pin D female in DCE-style pinning. The port is designed to connect to a 9-pin PC serial port with a straight-through M-F cable. RS-232 levels are used.

Serial Port Pinouts

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Function</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CD</td>
<td>Unused</td>
</tr>
<tr>
<td>2</td>
<td>RX Data</td>
<td>From ACCESS</td>
</tr>
<tr>
<td>3</td>
<td>TX Data</td>
<td>To ACCESS</td>
</tr>
<tr>
<td>4</td>
<td>DTR</td>
<td>To ACCESS</td>
</tr>
<tr>
<td>5</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>DSR</td>
<td>From ACCESS</td>
</tr>
<tr>
<td>7</td>
<td>RTS</td>
<td>To ACCESS</td>
</tr>
<tr>
<td>8</td>
<td>CTS</td>
<td>From ACCESS</td>
</tr>
<tr>
<td>9</td>
<td>RI</td>
<td>Unused</td>
</tr>
</tbody>
</table>
III. QUICK START—MAKING CONNECTIONS WITH ACCESS RACK

This section skips over many of the details concerning the configuration of remote connections with ACCESS Rack, and focuses instead on the minimum information needed to establish a connection. ACCESS Rack connections with the use of the Switchboard server will be covered.

MORE ABOUT PROFILES

Refer to Page 35 for more information about creating profiles on ACCESS Rack. Profiles, once created, can be assigned to any remote connection on the Connections page. ACCESS Rack ships with several popular profiles pre-programmed by default, and has the ability to create custom profiles. For the purposes of this Quick Start, use the system default profile, which won’t require changes to the factory default settings. This factory default profile uses the Opus mono encoder in both directions of the link.

USING THE CONSOLE

The ACCESS Rack console interface is accessed by connecting a keyboard, video monitor, and mouse to the rear panel before power-up. This interface is nearly identical to the web-based interface page.

LOGGING IN

For users without KVM connections, they will need to know the IP address of their ACCESS Rack in order to use it. After determining the IP Address of the ACCESS Rack, open any computer’s web browser on the same network as ACCESS Rack. Type the IP address in the browser URL to navigate to the ACCESS Rack’s web interface. Log in to ACCESS Rack with any user name and, if not changed, the default password “comrex” (lowercase).

FIGURE 3 WEB INTERFACE LOGIN
MAKING SWITCHBOARD CONNECTIONS

On the Web Interface, select the “Connections” Tab. This Tab will populate with a list of available remote codecs to call. When the ACCESS Rack is “synced” with Switchboard, connections to other codecs in a user’s Switchboard account are simple. Go to the listings on the bottom that appear with a “Gear” icon on the left side. Any units with a Green Gear icon are available for Switchboard connections. Highlight them and select the “Connect” button on the right side of the screen to initiate a connection.

![Connections list]

FIGURE 4 SWITCHBOARD CONNECTIONS ICONS

RECEIVING INCOMING CONNECTIONS

By default, ACCESS Rack is set to automatically answer incoming calls, whether or not Switchboard is used to make them. Incoming calls will appear in your connections list while they are active. They can be disconnected locally by highlighting them and clicking “Disconnect”.

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>State</th>
<th>Rx Status/Tx Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weather Studio</td>
<td></td>
<td>Connected</td>
<td>Rx: Opus Mono</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tx: N4-1 Opus Mono 48kps</td>
</tr>
<tr>
<td>Loopback</td>
<td>127.0.0.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 5 ACTIVE SWITCHBOARD CONNECTION
Firmware updates for the ACCESS Rack should be handled using Comrex Device Manager, a Windows- and MAC OS-executable program that can be downloaded from the Comrex website. Device Manager can also be used for license installation and IP configuration.

Please note: In order to configure a ACCESS Rack unit for the first time (without knowing the unit’s IP address), Device Manager must be run on a computer located on the same network (e.g. WiFi or physical LAN connection) as the unit itself. If this is not possible, an Ethernet crossover connection between the ACCESS Rack and a computer should be used for configuration.

As shown in Figure 6, running the Device Manager and clicking the “Scan” button will produce a list of all Comrex devices found on the LAN. If the default password has changed, Device Manager will prompt for the password to ACCESS Rack after the scan.

Figure 6 shows the four tabs that appear on the right-hand pane after Device Manager has logged in. The fourth tab is labelled Web Configuration. This will open a simplified setup interface on the ACCESS Rack called Toolbox. The Toolbox interface allows for configuration of several options including the Ethernet port. Log in to Toolbox with a user name (any) and password (default = comrex) to enter the Toolbox.

Once logged into Toolbox, choose the Network/Admin/CrossLock option and then choose Set up Ethernet. Choose the Ethernet port that appears in the list, which will look like Figure 7.
Generally, it is recommended to configure the Ethernet port of an ACCESS Rack for a static IP. This will facilitate access to the **Web-based Interface** with a browser and allow for easier configuration of routers or firewalls (if necessary). If the ACCESS Rack is to be installed on a managed LAN, Comrex recommends consulting with the IT services provider about obtaining a static IP address.

As mentioned in the previous section, the ACCESS Rack is configured for **DHCP** by default. This means that it tries to extract an unused IP address from the network router upon booting. To change the Ethernet IP addressing to **static**, select the “default” location at the bottom of the list and change the “IP Type” to **static**. The system will prompt a list of static settings as shown in **Figure 8** (on the following page).

As can be seen in **Figure 8**, the **static IP address, the Netmask, the Gateway Address**, and at least one **DNS Server Address** must be configured in the proper fields to set a static IP address. Once that information has been inputted, click the “back” button and select **Apply Changes** to have the ACCESS Rack accept and activate the new Ethernet settings. Note that if the IP settings of the Ethernet port have been changed, the connection to the **Toolbox** interface will no longer work. Click the “Scan” button on **Device Manager** to re-sync with the new IP address.
While Device Manager is open and synced to a codec, it’s a good time to check to see if an update is available for the product.

To do this, select the Firmware tab, shown in Figure 9 below.

The unit’s current firmware and the most recent version of firmware for the unit are listed at the top of the tab (1 in Figure 9). If the device isn't running the latest version of firmware, click the “Get Latest Version” button (2 in Figure 9) and download it. (If the unit’s Firmware is current, the button will be grayed out.) Next, select “Update Device” (3 in Figure 9), choose the .upd file just downloaded and click OK, and Device Manager will then update the unit’s firmware.
NETWORK RECOVERY MODE

Since the Ethernet settings are made with a web connection, keying in incorrect static IP information can result in losing access to the Network Manager interface entirely. If this happens, it is possible to be “locked out” of the unit (i.e., unable to log in). Device Manager has a network recovery tool to help with this: Network Recovery Mode.

For security reasons, Network Recovery Mode is only available during the first five minutes after an ACCESS Rack unit has (re)booted. Once those five minutes have elapsed, the unit will need to be rebooted in order to perform network recovery.

Figure 10 shows Network Recovery Mode. The “Scan” button has shown the presence of an ACCESS Rack on the network. On the “Device” tab on the right pane, the “Network Settings” button is activated and a countdown timer is started. Selecting this will allow changing of the primary Ethernet settings in the same way as Toolbox.

Once the IP address is setup via the Device Manager, the rest of the setup and operation of the ACCESS Rack is done via either the Console-Connection Interface or the Web-Based Interface. This process is addressed in the following section.
FIGURE 10 NETWORK RECOVERY MODE
v. CONFIGURING THE ACCESS RACK

The ACCESS Rack is primarily controlled by using a browser to access the built-in web server, which offers an HTML5 user interface page. Alternately, a similar page is displayed when a keyboard, video monitor, and mouse (abbreviated KVM) are attached to the rear panel of the ACCESS Rack. This is called the Console Interface. The main differences between the console and the web-based interfaces are:

1) There are no audio level meters displayed on the console interface.
2) The console interface does not require a login procedure.

LOGIN

Upon connection to the ACCESS Rack, a login screen will appear, as seen in Figure 11. Any username can be chosen and used with the default password: comrex. This will access the Main User Interface display.

![Figure 11 Web Interface Login](image)

INTERFACE PAGE SECTIONS

There are two parts to the primary interface screen (Figure 12):

- **Main Audio Meter (1)** - This meter displays audio levelling for active connections to the ACCESS Rack. This meter is not available in the Console Interface (KVM).
- **Configuration Tabs (2)** - The primary focus of the ACCESS Rack configuration interface. These tabs consist of Connections, Dashboard, Performance, Profile Manager, and System Settings to control and obtain status of ACCESS Rack. They are described in detail in the following sections.
The **Connections** Tab is the first window in the configuration interface. This allows for monitoring device connectivity and controlling connections. In this tab the names and IP addresses of remote units can be saved. To add a new remote unit to the list, select the “+” icon on the right side of the list. A dialogue box will appear asking for a name for the unit as well as its IP address. An algorithmic profile must be selected for the new codec unit. To get started, choose one of the default profiles provided. Custom profiles are possible and are covered in a later section. In the event that a stored unit is no longer desired, it can be deleted through the **Trash Icon** option.

The **Connections** tab will display **Name** and **Status** information of a remote Comrex codec when it has initiated a connection to the ACCESS Rack. Information from units connected this way will only appear while the connection is active.

By default, three remotes appear on the list. These remotes are used for troubleshooting connectivity and include:

1. **Loopback** - Allows for localhost, testing the connection of the rack and remotes on the network.
2. **Comrex Lab Voice** - This provides a talk feed from the Comrex headquarters in Massachusetts, USA for testing network connections.
3. **Comrex Lab Music** - This provides a music feed from the Comrex headquarters in Massachusetts, USA for testing network connections.

DASHBOARD TAB

The Dashboard Tab is designed to be open during active connections (**Figure 13**). It provides a quick view of some vital parameters for use during live streaming.
FIGURE 13 DASHBOARD TAB

1. The audio level meters give a quick indication of send and receive levels.
2. The Contact Closure section gives a visual indication of the state of each input (local) and output closure (remote). The input closure boxes also function as buttons to trigger closures locally.
3. The Active Connections section gives an indication of any currently active connections. If more than one connection is active, they will display in a list here.
4. Switchboard status, Public IP, and router information are displaced in the status box.
5. A quick view of the codec’s receive stats are presented in the lower section. This is similar to the statistics presented under the Performance->Active Connection described in the next section.

PERFORMANCE TAB

The Performance Tab includes information on data transmission and reception rates from ACCESS Rack to active remote connections. This allows for real-time monitoring of network quality during connections.

ACTIVE CONNECTIONS

Clicking the header “Active Connection” will show a basic chart of real-time codec receive performance. Channel Statistics, as shown in Figure 14, will give numeric statistics for the current active call. If several calls are active (Multistreaming), each will appear in a separate section.

<table>
<thead>
<tr>
<th>Remote Unit</th>
<th>Duration</th>
<th>RX Rate</th>
<th>RX Overload</th>
<th>RX Delay</th>
<th>TX Rate</th>
<th>TX Overload</th>
<th>TX Delay</th>
<th>Frame Loss</th>
<th>Remote Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nagafla</td>
<td>00:00:43</td>
<td>1.2Mbps</td>
<td>99%</td>
<td>12ms</td>
<td>48.4Mbps</td>
<td>2%</td>
<td>20ms</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

FIGURE 14 CHANNEL STATISTICS

Figure 15 displays a real-time graph. This shows only statistics for the incoming data of the local codec. If a connection does not use the optional CrossLock reliability layer, this graph will be the only real-time network graph available. CrossLock connections also display the CrossLock statistics graph, which has more information.
FIGURE 15 JITTER/PACKET ERROR GRAPH

The left graph represents the work of the Jitter Buffer Manager. The area of most interest is the light blue area as shown in **Figure 15**, which illustrates a spread of jitter values (referenced to the current play out pointer) over the last second. If this area covers a large span, the relative jitter is high. If the light blue section of the graph is small or invisible over a time period, less jitter is present. Based on the historical value of this jitter figure, the buffer manager will expand or contract the receive buffer (lengthening and shortening overall delay). The time interval over which this measurement is assessed is called the “jitter window” and is adjustable in the Advanced Profile editor. The work of the Jitter Buffer Manager is shown by the yellow line, which is the target buffer delay that the system is trying to achieve, based on measurements calculated over the jitter window.

The right side of the display shows a real-time and historical representation of frame loss. If the decoder does not receive packets in time, the chart will show a red line indicating the percentage of lost packets over the one-second interval.

CODEC CHANNEL FIELD

Clicking on the Codec Channel field delivers information on the ACCESS Rack’s total receive rate and transmit rate, including information for multiple connections when applicable. When multiple transmit connections are active, this will show an aggregate rate of all outgoing connections (**Figure 16**).

![Codec Channel](image)

FIGURE 16 CODEC CHANNEL

CROSSLOCK FIELD

Clicking on CrossLock opens a set of real-time graphs which monitor the status of the optional CrossLock reliability layer. These fields will not appear when non-CrossLock connections are active. These stats are a powerful tool for monitoring and diagnosing the quality of connections, as well as for managing the delay settings during the connection.
The CrossLock Stats are similar to the information available on the Active Connections graph, which shows streaming performance without regard to the CrossLock layer. The CrossLock Stats show finer details about network performance in both directions than can be obtained through the Active Connections graph. CrossLock stats are shown for both the data being transmitted from the local codec and the data being received by the local codec. All relevant stats are available for both directions.

PACKET LOSS GRAPH

Figure 17 indicates, in percentage terms, what’s gone wrong on the network during each one-second window. Three different color-coded entries appear here: 1 Packet Loss (dark red) - The system has detected a packet has been completely dropped by the network and was never received by the decoder. 2 Packet Late (bright red) - The system received the packet, but it was too late for decoding and play out. 3 Packet recovered (green) - The packet was either lost or late, but was recovered by either the Forward Error Correction (FEC) or the Automatic Repeat Query (ARQ) error correction built into CrossLock.

UTILIZATION GRAPH

Figure 18 contains a graph of the outgoing (or incoming) utilization of the network. The bars indicate the average data rate used by the system during each one-second window. It is possible that the size of these bars will vary because CrossLock (in some modes) has control over data rate through a technique called “throttling”. Based on network feedback statistics, CrossLock will reduce or increase the utilization dynamically. If more than one network device is in use, the utilization graph will be color-coded, indicating the relative utilization of each network device. The color-code key for each network device appears on the under graph. Overlayed on the network utilization graph is a gray line. This is the encoder target rate, which reflects the bitrate chosen in the profile used in the connection. This is treated as a maximum value, so utilization should mostly remain below this line.
CROSSLOCK SETTINGS

Clicking the CrossLock Settings field during an active connection will display the CrossLock sliders. There is a slider available for transmit and receive operation.

For most CrossLock connections, the sliders should be left at their default Automatic Delay Mode settings. But during connections on unusual networks, these sliders are designed to quickly adjust the current delay settings. The sliders will reset when a CrossLock connection ends.

![Delay Slider Bars - Automatic Delay Mode](image)

The most powerful way to stabilize any streaming connection is to have the decoder add a delay buffer to the connection. This compensates for changes in the rate packets are received (known as jitter). CrossLock uses a combination of decode delay buffering and error correction to keep connections stable.

At the start of a CrossLock connection, the sliders are in “Auto Delay” mode and the information on the sliders is purely for informational purposes. Clicking off the “Auto Delay” box sets the system to Manual Delay mode and allows the slider to be moved with a mouse. The entire slider is scalable, and the range of it from left to right will vary from one hundred milliseconds to several seconds depending on the range of delays currently being addressed. In either Auto or Manual mode, a series of color bars are overlayed on the slider, to signify delay “zones” of safety.

![Delay Slider Bars - Manual Delay Mode](image)

Furthest left is the red zone, which indicates a buffer level that is too low for stable transmission. The yellow zone indicates a delay buffer that may have stability issues, and the green zone indicates a buffer level that should
provide stability. These “zones” scale, increase and decrease in size based on the history of jitter experienced by CrossLock on the network. In “Auto Delay” mode, the dark dot signifies the “Current Delay”, which is the best compromise value calculated by the system to balance stability and delay. By changing the “Automatic Delay Mode” switch to manual, the “Target Delay” indicator can be dragged left or right to override the automatic settings, and increase or decrease the delay.

Please note: Any settings made in Manual Mode will be erased after the current CrossLock session is terminated. In order to make delay buffer changes permanent, use the settings in the Profile Manager as outlined in the unit manual.

PROFILE MANAGER TAB

ACCESS Rack provides a powerful set of controls to determine how it connects. The Profile Manager tab (Figure 21) allows the definition of one or more profiles to assign to outgoing remote connections. It is often unnecessary to create any new profiles since ACCESS Rack ships with a set of factory-default profiles that cover most users. This tab allows for creating custom profiles when necessary. Please remember, though, that these profile settings only apply to connections initiated from ACCESS Rack. Incoming connections from another unit are defined by that unit’s profile settings.

Profile creation is segmented into commonly used and advanced options. In order to simplify the interface, Advanced Options are normally hidden from the user. Please note: Building a profile doesn’t change how any remotes are connected until that profile is assigned to a remote on the Connections tab. Once a profile is defined, it will be available on the Connections tab to be assigned to any defined connection.
BUILDING A PROFILE

To build a new profile, select Add New Profile (1 in Figure 22), and a new profile will appear on the list labelled New Profile. Select it to populate a set of options, starting with the profile Name (2 in Figure 22). Here, the profile can be renamed to something easier to remember.

Next is the Channel option (3 in Figure 22), which allows for selecting between a standard Comrex IP connection (BRIC normal) or one of the other connection modes offered by ACCESS Rack. Note that when using the CrossLock reliability layer, BRIC Normal mode is chosen here, as this is the protocol that runs with the CrossLock VPN.

Other Channel options include a modem-based connection (which uses the telephone line rather than the Ethernet port), IP Multicast (a method to deliver audio to multiple locations), EBU3326/SIP for compatibility, and less often used protocols like standard RTP, TCP, and HTTP. Different aspects of these channel types are described in later sections.

Note: It’s important to define the channel of a profile before moving on to other options, since the choices in the subsequent sections will vary based on this choice. Make sure to press Apply Changes in order to confirm each change made.

![Figure 22 PROFILE MANAGER TAB](image)

PROFILE SETTINGS: LOCAL & REMOTE ENCODERS

When choosing an IP-based channel (i.e., BRIC Normal), users will be presented with two categories of options: Local and Remote. The Local Settings are used to determine how a transmitting ACCESS behaves, and the Remote Settings will determine how the receiving ACCESS on the far end behaves. Each category lists identical options, so only Local Settings will be covered.

Connection Timeout - Under normal circumstances, a connection will be terminated on one end, and the other end will drop the connection in turn. However, if a network failure occurs or a connection is ended abruptly (e.g. because the power to one unit was unexpectedly killed), the system will drop the connection after a predetermined time. The default is 60 seconds, but this can be shortened or lengthened as desired. If an indefinite connection is necessary, refer to Operating ACCESS Rack in a 24/7 Environment on Page 67 for additional information.
Encoder - It is unnecessary to define any decoder types when using ACCESS because they automatically adapt to the incoming stream. In this menu, users can select the encoder used to send audio from this ACCESS (local) as well as the encoder used to send audio to this ACCESS (remote). The default value of the remote encoder is to follow the local encoder (i.e., it will send exactly the same codec mode it receives). This is defined as Follow Mode in the remote encoder selection table. See the About the Algorithms section on Page 73 for more information on selecting encoders.

Transmit On/Off - This option determines whether the selected encoder (local or remote) is actually sending any data. By default, Transmission and Reception on all encoders is turned on, but there may be circumstances where one-way operation is desired (e.g. Multistreaming, as described on Page 76). Turning off the local encoder transmission disables outgoing audio, and disabling the remote encoder transmission disables incoming audio.

ADVANCED LOCAL & REMOTE OPTIONS

The following advanced options apply to both the local and remote entries and largely deal with the performance of Jitter Buffer Manager. This is actually a very complex decision-making process involving many variables, and most of the time the default parameters should work well. These advanced options are a means of overriding the defaults, and Comrex recommends that users take care when changing them. Note that when it comes to settings that effect the jitter buffer manager, local settings affect the decoder on the local side, and remote settings affect the decoder on the remote end.

Frames per Packet - This function allows the encoder to wait for variable “X” number of frames to exist before sending a packet. This option differs from FEC because each frame is only sent once. Setting this value to a number higher than one can reduce network usage, at the expense of delay. This is because packet overhead bits like IP and UDP headers are sent less often.

Decoder Downmix - This option controls the method by which decoded stereo audio will be down-mixed to mono.

Loss Cushion - Packets may arrive at the decoder displaying a range of statistical properties. They may arrive in reasonably good timing and in order, or half may arrive quickly with the other half delayed significantly. In some cases, most of the packets arrive in a timely manner, but a small percentage of them may be extremely late. It is usually preferable to allow these late packets to be left out of the stream entirely and keep the delay lower. The decoder error concealment hides these packet losses. The Loss Cushion parameter instructs the buffer manager to ignore a certain percentage of late packets in its calculation. The default value is 5%. Applications that are not delay-sensitive may wish to reduce this value to zero, while extremely delay-sensitive applications may prefer to have this closer to 25%.

Retransmit Squelch Trigger - Retransmit Squelch options are used to determine how the buffer manager reacts to typical data dropouts like those seen on wireless networks. The Trigger option determines the amount of time the decoder must experience 100% packet loss before the Retransmit Squelch function is triggered. Default is one second.
Retransmit Squelch Max - The longest period of data loss during which the squelch function is active. Default is two seconds. During the squelch period, the buffer manager ignores the relative jitter experienced and does not adjust buffer size to compensate.

Fixed Delay - This option simply sets the Delay Cushion and Delay Limit at a similar value, so that the delay buffer is defined to the chosen value and will not increase or decrease significantly.

Delay Cushion - The jitter buffer manager works to keep absolute delay to a minimum. Some applications are not delay-sensitive and rely less on the jitter buffer manager. The Delay Cushion setting is a way to instruct the manager not to attempt to drive the delay below a certain value (e.g. if the delay cushion is set to 500 ms, this amount of fixed delay will be added to the buffer). If the jitter manager needs to increase the buffer it will do so, but will not go below the 0.5 second level.

Delay Limit - The inverse of the Delay Cushion, this parameter instructs the manager not to wind the buffer out beyond a certain delay value, regardless of how many packets are lost. This is useful in applications where staying below a certain delay figure is essential, but use of the delay limit can result in very poor performance if the network jitter dramatically exceeds the limit.

Jitter Window - This parameter defines the amount of time (in minutes) that historical network performance is analyzed in order to make the rest of the calculations. As an example, if the Jitter Window is set to the default of five minutes, and if a dramatic network event happens and the buffer manager reacts (perhaps by increasing the buffer), the event will be included in the manager's calculations for the next five minutes. If the network experiences improved performance over this period, the manager may choose to wind the buffer back down after the five minutes has passed.

Buffer Management On/Off - This is a diagnostic setting used to troubleshoot buffer manager performance by the factory. For usage, it should always remain “on”.

CrossLock Managed Delay - There are two ways ACCESS Rack can calculate its target delay, and, therefore, how much decoder buffer to add. The first is the BRIC-Normal way, and is the default for non-CrossLock connections. Buffer size is set based on a histogram of past jitter performance. This will incur the shortest delay possible. For CrossLock connections, the buffer is increased to allow the use of error correction, so buffer is thus based on a combination of the jitter histogram, and the round-trip delay as calculated by the system. This will generally result in bigger decode buffers (and higher delays). Because it is lower, the default setting is to use the jitter histogram for all connections. This setting allows the profile user to use alternately the CrossLock “error correction friendly” setting, for connections where delay is less important.

The following three settings are available to users in BRIC Normal mode. They are legacy settings for use in non-CrossLock connections. Most users should leave these settings as-is, as they can interfere with CrossLock connections. CrossLock settings now incorporate these functions.

Congestion Avoidance - Enabling this option allows the encoder to dynamically change the number of frames per packet sent, thereby reducing total data requirements. In addition, in most encode modes, enabling congestion
avoidance provides the system a license to step down to a lower encode data rate if desired. This will happen automatically and with no audio interruption. Step down congestion avoidance is not enabled in the Linear PCM mode.

UDP Reliability - UDP, the Internet protocol used by BRIC Normal connections, does not have any inherent error correction capability. UDP Reliability adds an intelligent algorithm that requests packet resends when appropriate above the base UDP level. This UDP Reliability is useful on some wireless connections that have unsatisfactory performance due to packet loss.

Max Retransmission Rate - This parameter places an upper limit on how much additional bandwidth is utilized by the BRUTE UDP reliability layer. The default setting is 100, which allows the error correction layer to use the same amount of bandwidth as the audio stream. For example, if an audio stream is consuming 80 kb/s of network bandwidth, and UDP Max Retransmissions is set at 50%, up to 40 kb/s additional network bandwidth may be used for error correction.

SYSTEM SETTINGS TAB

The *System Settings* tab defines parameters that are not specific to a particular remote connection. Examples are how incoming calls are handled, codec name, and assignment of contact closures. The *System Settings* tab is shown in Figure 23, and has several categories: Security; Connections; Contact Closures; Switchboard Server; Crosslock VPN; System Clock; and Alternate Modes. As with the *Profiles* tab, basic options are shown by default and less frequently used settings are hidden until the *Show Advanced* option is selected.

![Figure 23 System Settings Tab](image-url)
SECURITY SETTINGS

Remote Control Password - This allows for a defined password for the web GUI and firmware updates. The default password is comrex (lowercase).

CONNECTIONS

Unit Name - Users are encouraged to name their codecs here. The default name of a codec is the unique Switchboard ID/MAC address of the unit. By changing this to something familiar and unique (e.g. “Roving reporter”, “Weather guy”, etc.), you will see this name change reflected in several places:

1. In the browser used to show the remote control page;
2. In Comrex provided utility software such as Remote Control and Device Manager;
3. In Switchboard Traversal Server Contact lists.

Incoming Connection Password - This allows users to define a password that must be attached to all incoming connections before they are accepted. Remote units placing outgoing connections to ACCESS Rack must know this password and apply it to the outgoing stream. Leaving the field blank will disable this function. Not applicable in Switchboard connections.

Always Connect to Remote - This field is available to designate a remote for “always on” operation. This is useful in “nailed up” environments, where a signal is required across the link 24 hours a day. To assign an always on remote, simply pull down the menu and select which remote to designate as Always On. A connection will be made and sustained to the chosen remote. Remote connections must be created in the Connections tab before they can be assigned to this function. Not applicable in Switchboard connections.

POTS Modem Tones - This allows for enabling and disabling the POTS Modem connection tone when establishing a connection. This setting is Enabled by default.

CONTACT CLOSURES

CC Connect Status - Allows for the activation of contact closure #4 out when connected. If this is selected, the signal follows the ACCESS Rack front panel Ready light, and will be valid (closed) when a valid connection is present and invalid (open) when no connection is present. The additional options (CC1, CC2, and CC3) allow for assigning a particular remote that will be connected when its corresponding contact closure is engaged. To assign a remote connection to a contact closure, simply pull down the menu box next to the desired closure and select the proper remote. A connection attempt will be made whenever the contact is triggered, and will disconnect whenever the contact is released.

SWITCHBOARD SERVER

Switchboard Enabled - This option enables the use of Switchboard to connect to remote units. (See Making Connections via Switchboard on Page 49 for more information on using the Switchboard Traversal Server.)
Show Offline Units - If enabled, shows offline Switchboard remotes in the remote list.

CROSSLOCK VPN

Enable - This option enables the Crosslock VPN added reliability layer to connect to remote units. (See Making Connections Via Switchboard On ACCESS Rack on Page 49 for more information on using the Crosslock VPN.)

Retransmit Delay - This section allows the selection of additional delay for the retransmission of lost packets when calculating auto-delay targets. The 2xRTT setting is selected by default.

Redundant Transmission - When calculating auto-delay target, allow enough additional delay for the retransmission of lost packets. The default setting is Off.

Encoder Throttle - This option will allow the system to reduce the bitrate of encoded media when network conditions deteriorate. Disabling this option will prevent the system from lowering the quality of the encoded media, but will also significantly reduce the ability of the system to handle networks with variable performance. This setting is set to Yes by default.

Hotswap CC Indicator - When enabled, this setting will activate a selected contact closure when a CrossLock backup interface is configured and has become activated due to failure of the primary interface(s). This is set to Disabled by default.

Hotswap CC Unit - This setting allows users to select which unit to indicate HotSwap failover on. This is set to Remote by default and additionally includes a Local and Both selection.

SYSTEM CLOCK

NTP Enabled - Enables the use of NTP network time synchronization. This setting is set to Yes by default.

NTP Server - This allows users to set the address of the NTP server. This is set for 0.comrex.pool.ntp.org by default.

Timezone - Users can set their Timezone in this setting. This allows for inputting a User’s Timezone by Region, Country, and Timezone.

ALTERNATE MODES

BRIC Normal Settings

• Accept Incoming Connections - This determines if this ACCESS Rack is used for incoming normal IP connections. If this function is not enabled, ACCESS Rack will only support outgoing calls using BRIC Normal Mode.

Modem

• Accept Incoming Connections - This allows an ACCESS Rack to listen for and automatically answer incoming calls.

EBU3266/SIP Settings
• **Accept Incoming Connections** - This determines whether incoming calls are accepted in EBU3326/SIP format (used for compatibility with other manufacturers who follow this protocol).

• **Incoming Connection Profile** - This allows users to select whether SIP calls will take place using a specific encoding algorithm. **Note:** If this option is chosen, only calls using the selected algorithm are allowed. Default is “None”.

• **Use SIP Proxy** - This option determines whether the SIP function is “registered” to a SIP cloud server. If this setting is enabled the address, user name, and password for the proxy must be added in the relevant fields.

• **SIP Proxy Address** - IP address or URL of the SIP proxy used.

• **SIP Username** - Username for logging into registered SIP server; provided by the SIP service provider.

• **SIP Password** - Password for logging into registered SIP server; provided by the SIP service provider.

ADVANCED SYSTEM SETTINGS

When the **Show Advanced Settings** option is enabled, additional options and categories are displayed.

SECURITY

Remote Control - This enables remote control and firmware update functionality. This option may be changed in the System console. This setting is “View Only” in the web based interface.

Remote Diagnostics - When activated, this option allows for remote diagnostics capability. The default setting is Off.

Web Server Port - This controls the port that the UI web server uses when remote control is enabled. The default setting is TCP 80.

CONNECTIONS

Disable Congestion Avoidance - Allows users to disable the congestion avoidance feature. Default is No.

AUXILIARY SERIAL

Baud Rate - Allows for controlling the Baud Rate of the serial port. Default is set to 9600.

Data Bits - Allows for the configuration of number of data bits. Default is set to 8.

Stop Bits - Configures the number of stop bits. Default is set to 1.

Flow Control - Allows for selection of the flow control method. Default is set to None with options for HW (RTS/CTS) and SW (XON/XOFF).

Parity - Users can select parity protection with this setting. Default is set to None with the additional options for Odd or Even.
SWITCHBOARD SERVER

Switchboard Address - IP address of the Switchboard server.

STUN Server - IP address of the STUN Server.

Switchboard Port - TCP port of the Switchboard Server.

CROSSLOCK VPN

UDP Port - Sets the UDP port used for Crosslock VPN Connections. Default is set to UDP 9001.

Permissive - Allows users to accept Crosslock connections from any unit. This is set to No by default.

Authentication - Enables the authentication of connections. Default setting is No.

Protection - Enables AES encryption and payload integrity protection to prevent tampering with or interception of the transmitted content. This option has a SIGNIFICANT system overhead. Default setting is No.

Maximum Delay - Maximum allowed target delay, in milliseconds. Set to 5000 ms by default.

FEC - Enables data loss protection. This option controls protection on data transmitted to the remote end. Disabled by default.

FEC Delay - Amount of delay to allow for FEC. Lower packet rates will require higher delay to remain effective.

Rentransmit - Enables retransmission of lost data. This option controls protection on data transmitted to the remote end.

Header Compression - Enables the compression of headers to reduce overhead, especially at lower bitrates. Default is set to Yes.

Base FEC - Applies a constant base amount of FEC sufficient to recover the specified rate of packet loss. Default is set to 0%

STUN Server - Displays IP address of the STUN Server. Default is stun.comrex.com.

Always Connect - Allows users to attempt to maintain a VPN connection to a selected peer whenever possible. Default is set to None.

BRIC NORMAL SETTINGS

IP Port - This option defines the incoming UDP port: the number to be used for incoming IP connections. The default is UDP 9000. Crosslock connection is defaulted to UDP 9001. Note that since most ACCESS Rack codecs attempt a connection on this port number, changing it can mean the remote units in the field must dial specifically to the new port number in order to connect to the ACCESS Rack. An outgoing call must be made to a specific port number in the form of IP-ADDRESS:PORT#. For example, dialing port UDP 5004 on the Comrex test line is formatted 70.22.155.131:5004.
HTTP

Accept Incoming Connections - Users can set ACCESS Rack to listen for and automatically answer any HTTP incoming calls. This option is set to No by default.

IP Port - This option defines the incoming TCP port: the number to be used for incoming HTTP connections. The default is TCP 8000.

Encoder - This defines the encoder used for HTTP streaming. Default is HE-AAC V2 Stereo 48KB.

Genre - Users can define the Genre for HTTP streaming. Default value is set to Live.

Info URL - Informational URL associated with the stream. This setting is left blank by default.

Public - Allows users to define the HTTP stream as a Public Stream. Default setting is No.

MODEM

Ring Count - If Auto-Answer is enabled, users can determine the amount of rings before the line will be answered after. Default is set to 1.

Max Modem Rate - This allows users to set the maximum allowed modem connect rate. Default setting is 24000.

Min Modem Rate - This allows users to set the minimum allowed modem connect rate. Default setting is 9600.

Extra Modem Init - This allows users to enter an extra modem initialization string. The default is set to blank.

STANDARD RTP SETTINGS

These settings offer several modes that allow compatibility with specific IP coding devices. For complete details, please review the IP Compatibility appendix on Page 101.

Accept Incoming Connections - Listen for and automatically answer incoming calls.

Incoming Connection Profile - Use this profile for incoming connections.

IP Port - Allows users to designate an incoming network port.

RTP Compatibility Mode - Enables compatibility with select RTP audio streaming devices.

Return Channel Enable - Enables a return channel sent back to the transmitter for incoming calls.

Return Channel Encoder - For incoming calls, this specifies the codec to be used for the return channel.

Return Channel Frames per Packet - Determines how many audio frames are included in each packet. Values over 1 will reduce network bandwidth but will increase delay. This is set to 1 by default.
Incoming Timeout - For incoming calls, this specifies time connection timeout. Set to 60 seconds by default.

EBU3266/SIP SETTINGS

IP Port - The port used by the SIP negotiation channel when using EBU3326/SIP Mode. If this port is changed, it’s likely to break compatibility with other manufacturer’s codecs.

User Agent Whitelist - List of SIP user agents that are allowed to communicate. Only SIP agents on this list can communicate with the ACCESS Rack. Note: This setting is not enabled when using a registered SIP proxy.

User Agent Blacklist - List of SIP user agents that are not allowed to communicate.

VIP QC Password - For legacy purposes with the VIP QC app, which has been deprecated.

RTP IP Port - The port used for audio transfer during EBU3326/SIP mode. Since this port info is transferred during the negotiation process, it can be changed without breaking compatibility. Note: RTSP data is always sent and received on the port one number higher than this.

Public IP Override - Enable this in an environment where ports have been forwarded through a router to the ACCESS Rack. SIP protocol assumes no ports are forwarded and may have trouble connecting if this function is not enabled.

Use STUN Server - Determines whether or not to use the STUN derived address in the outgoing fields. ACCESS Rack has alternate NAT Traversal ability so this is off by default.

SIP Proxy Keepalive - Defines how often the SIP proxy handshake happens when no call is present.

SIP Domain - When registering with some SIP services, a separate domain entry is required. If this is not populated, the domain of the SIP proxy entry is used.

SIP Auth Username - When registering for some SIP services, a separate Auth Username is required. Do not populate unless a specific entry is required by the provider.

Send RTP To Source Port - A NAT Traversal function used with smartphone apps. Enabled by default.

SIP Routing - Specifically required by some SIP servers (e.g. OpenSIPS). Modifies the behavior of the route header.

TCP SETTINGS

ACCESS Rack performs best when using UDP for connections, but there are some rare circumstances when the system may need to be switched over to TCP operation. This advanced option defines how incoming TCP calls are handled. Outgoing calls are defined as TCP when their profile is configured. ACCESS Rack normally listens for
incoming calls on both TCP and UDP ports, and chooses the first to arrive. If a TCP call is detected, ACCESS Rack will attempt to use the same TCP link to transmit in the reverse direction.

Accept Incoming Connections - This allows turning TCP Auto Answer on and off. Disabling this function means only outgoing TCP calls can be established.

IP Port - Users have the option of setting the incoming TCP port number, which can be different than the UDP port number.

Note: Warnings given above about changing port numbers also apply here—calls with mismatched port numbers will fail.

MISCELLANEOUS

Meter Demo Mode - This setting will put the front panel LED meters into a demonstration mode. This setting is set to No by default.
VI. NETWORK MANAGER

NETWORK MANAGER

Located in the three-line “hamburger menu” in the upper left hand side of the Web Based Interface, the Network Manager allows configuration to the network settings for ACCESS Rack. Clicking on that tab will bring up the screen shown in Figure 24. The available networking connections from ACCESS Rack are presented on the left hand side of the screen in the Select Network Device section. This area will populate with the available Ethernet Ports or connected WiFi and Cellular adapters used to make a Network connection. Here the IP and SSID settings for these network connections can be configured. Because there may be bandwidth, firewall, and/or security concerns involved when installing ACCESS Rack on a managed LAN, Comrex strongly recommends that users consult their IT manager in environments where these concerns are present.

![Network Manager Main Screen](image)

FIGURE 24 NETWORK MANAGER MAIN SCREEN

The primary ethernet port for ACCESS Rack is configured for DHCP by default. In this configuration, ACCESS Rack will be assigned an IP address from a pool of available IP addresses from the network router upon booting. If ACCESS Rack is connected to the Internet, it should display connection information for the Ethernet Port, including IP and DNS server addresses. (If it doesn’t display this information, confirm that the unit is connected to the Internet and that the Ethernet Port is enabled.)

ETHERNET PORT SETTINGS

Select the top Ethernet Port (for the primary Internet) on the upper left of the screen in the Select Network Device. The default configuration for the Ethernet Port will display in the Device Settings box as seen in Figure 25. This port can be renamed, as well as enabled and disabled, in these settings. The Active Network Location section of the device settings will note which network configurations the unit is using for the Ethernet Port. By default, the Active Network Location will be populated with the “Default” location. This “Default” location is configured for DHCP and is initially enabled on all new units. See the next section for a description of network “locations”.
For users who wish to have a Static IP address for their units, this can be configured by editing the settings for the “Default” Active Network Location. First, select to expand the Default settings under Network Locations. Select IP Type to open a drop down selection screen. This will give users the option to change the “Default” Network Location to Static IP, DHCP, or Gateway IP types as shown in Figure 26.

NETWORK LOCATIONS

While the “Default” setting may work for many users in a stationary environment, ACCESS Rack includes Network Location settings for configuring different connections to different Networks known as “Locations”. This allows for on-the-fly connection to different Networks by storing connection and configuration data as a Name-able Location.

To do this, select the New Location under the Network Location header. Change the name of the Location to something memorable and then select IP Type (Figure 27). This controls the IP address type amongst DHCP, Static, and Gateway settings. If selecting a Static IP address, make certain to enter the unit’s new IP address, its Netmask, and its Gateway Address, as well as at least one DNS Server Address.

Static Route Settings present advanced network configuration for users with complex and multilayered networks. As this is an uncommon need for most users, Comrex recommends users interested in learning more refer to the Static Routing Technical Note at www.comrex.com.
Once a Network Location has been added, it can be easily implemented through the Active Network Location selection in Adjust Device Settings.

WLAN ADAPTER

While the previous section detailed use of Ethernet Port connectivity with ACCESS Rack, users additionally have the option to use WiFi and 4g cellular modem in making connections.

FIGURE 28 WLAN ADAPTER SETTINGS
When setting up a WiFi connection, users will require the use of a USB WiFi adapter to begin making connections. Once this has been installed, the adapter will populate in the Select Network Device section of the Network Manager Tab as the **WLAN Adapter (Figure 28)**. This adapter must be Enabled prior to using or scanning it. The WLAN Adapter can be enabled by selecting it in the list and selecting “Enabled” under the Device Manager Settings and setting it to “Yes”.

To select a new WiFi, select Scan to populate a list of local available networks. Choose the desired WiFi network and select **ADD AS LOCATION** to store the network. The selected network will then appear under the Network Locations section of the **WLAN Adapter** settings. For password-protected networks, select the **Key** field to enter the network password and select **APPLY CHANGES**.

Finally, set this new WiFi network by navigating to the Active Network Location. This will open a dialogue box to the right of the screen where stored WLAN Network locations can be selected. Click **APPLY CHANGES** to complete setting up the WLAN Adapter.

3G/4G CONNECTIONS

4G Cellular connections can be made with ACCESS Rack by attaching a cellular modem with SIM over USB connection. Cellular-based modems will appear as their model name. 4G connections generally populate automatically, as Cellular connections are SIM specific. Successful 4G connectivity will display like in **Figure 29**.

It is possible to modify the APN setting if the default is not correct by selecting the SIM option under Carrier Networks and selecting APN. New values can be inputted into the field manually. Additionally, some pre-programmed APNs may be selected based on the list of carriers programmed into ACCESS Rack. By setting the Region, Country, and Carrier option, the list will suggest the proper APN by carrier.
Modem-Reported Indicator allows users to use the modem-reported value for the number of bars of signal strength indicated, which is generally more accurate. Use of this option may cause trouble with certain modems. Modem must be re-attached after changing this option.

ADVANCED ETHERNET PORT SETTINGS

When Show Advanced Settings (in the lower left corner) is selected, the following options also appear:

Preserve After Reset - This option ensures that changes to the unit’s network configuration will be preserved even if the device is reset to factory defaults. This setting is disabled by default, and Comrex advises users to be cautious when enabling it. If the Ethernet parameters are set incorrectly, it is possible to be locked out of the ACCESS Rack, and then have to use the Device Manager program’s Network Recovery Mode (discussed on Page 18) in order to log into it.

Use With CrossLock - This option allows for specifying whether this Ethernet port will be used for CrossLock connections, and is enabled by default. It may be valuable to disable this setting in select circumstances, such as when using the main Ethernet for control purposes only or as a secondary port (added via USB-Ethernet converter) for CrossLock media.

Broadcast Config - This option allows the unit to be identified and configured via broadcast communication on the web-based interface and Device Manager. It is enabled by default.
VII. MAKING CROSSLOCK CONNECTIONS ON ACCESS RACK

Comrex first introduced **CrossLock**—its technology that creates an additional reliability layer to ensure quality broadcast connections—with version 4.0 firmware in 2016. As an increasing majority of users updated their units to CrossLock-capable firmware, connections made using CrossLock became the norm for Comrex codecs and are considered standard in ACCESS Rack and ACCESS Codec connections.

HOW CROSSLOCK WORKS: A BRIEF OVERVIEW

CrossLock is available on ACCESS Rack and older products running at least 4.x-level firmware. To understand how CrossLock works, it’s helpful to first focus on non-CrossLock connections as shown in **Figure 30**. Without CrossLock active, a codec will make BRIC Normal connections to ACCESS Rack on port 9000.

![Figure 30 NON-CROSSLOCK CONNECTION](image)

Alternatively, when CrossLock is used, it establishes a Virtual Private Network (VPN) between the hardware on both the transmitting and receiving units before a connection is established. Using this VPN, codecs can transfer much more information than is possible on Non-CrossLock legacy connections. This information includes network status, packet loss statistics, error correction parameters, media statistic information to set encoder throttle rates, and information required to establish links over multiple networks.

When enabled, the CrossLock VPN is created immediately when the first new connection is initiated, and remains for a short time after the last connection ends. In order to use CrossLock, both units in the connection must be running 4.x-level firmware or higher. CrossLock generally supports all algorithms that operate on 4.x-level firmware, but only supports data-intensive algorithms (e.g. Linear PCM and FLAC) on units running 4.3-p4 firmware or higher. As shown in **Figure 31**, BRIC Normal connections happen over the CrossLock VPN Layer. The CrossLock connection between the Comrex hardware happens over a single port (9001) but the BRIC Normal connections take place virtually on their usual legacy ports within that VPN.
One limitation of CrossLock is that each codec that joins the CrossLock VPN must be familiar with the others. This process takes place automatically when Switchboard is used. As detailed in section IX, connections that don’t use Switchboard need special configuration.

MULTIPLE NETWORK SETUP

In the case of more than one network attached to a ACCESS Rack (e.g. two Ethernet cables, a Wi-fi or 4G adapter, etc.), all networks are added to the CrossLock VPN and used for media transfer (unless specifically disabled for CrossLock use). The “performance” tab on the web interface will show the ratio of data being applied to networks on both the send and receive direction.

By default, data is apportioned between the networks in a “Bonding” mode. This means the entire data channel is broken into pieces and apportioned among the networks. This mode is best for networks of unknown quality. If one network becomes constrained, data will be allotted dynamically among the others. Bonding mode is very effective even when one network drops entirely, often providing glitch-free audio as data is switched over.

Alternately, CrossLock can be configured for “Redundant” mode. This is best for networks of known good quality. All data is reproduced over every available network, and only the first packet to arrive at the decoder is used.

Finally, CrossLock can be configured to use one Network only when the primary network fails. This is called “HotSwap” mode and is described in a later section.

As long as an incoming CrossLock call is possible on the primary network attached to a codec, the call may be initiated from the remote end of the connection. As an example: at a transmitter site, the primary network is a DSL line and port UDP 9001 (the default port for CrossLock connections) is open from the public Internet. The backup network is a 4G modem, which on its own would not accept an incoming connect request. Even without using Switchboard, the connection can be initiated from the studio side, and the 4G modem will be automatically added to the CrossLock channel.
CROSSLOCK CONNECTIONS TO MULTIRACK

Without CrossLock active, a codec will make BRIC Normal connections to MultiRack instance #1 on port 9000. Instance #2 will connect on 9002 and instance #3 will connect on 9003. These are on the MultiRack side, and the remote codecs will all use their default ports of 9000.

The CrossLock connection between the Comrex hardware happens over a single port (9001) but the BRIC Normal connections take place virtually on their usual legacy ports within that VPN. The system will show these virtual connections happening on ports 9000, 9002 and 9003 (these are the BRIC Normal ports), but the only actual connection between hardware is happening on 9001. For this reason, if you only intend to make CrossLock connections to MultiRack, only UDP port 9001 needs to be open or forwarded.
VIII. MAKING SWITCHBOARD CONNECTIONS ON ACCESS RACK

This section describes the procedure of making and receiving connection on ACCESS Rack via the Comrex Switchboard server. This is the easiest, but not the only, way to make ACCESS Rack connections. Before connections are made this way, you must set up and configure a Switchboard account as described in Section XI.

If you don’t want to use the Switchboard server to make connections, skip this section and go to Section IX, Making Manual CrossLock Connections.

Switchboard Connections can be made with or without the CrossLock protection layer. Note that this choice affects which IP ports are used for connections, so there are implications concerning firewalls and routers.

When Switchboard is used, the choice of “peers” to connect to appears in a dynamic list, as shown in Figure 32. Any peer showing a “gear” icon is a connectible codec. If that gear is green, the far-end is available for incoming connections.

By selecting a Switchboard peer and clicking the edit “pencil” icon on the right side, you can change several important aspects of the Switchboard connection:

1. **Use CrossLock** - Determine whether the connection will be made over the CrossLock Layer and port arrangement, or over the legacy BRIC Normal protocol and port arrangement.
2. **Connection Password** - This adds an extra layer of security to the connection. This is a password that has been programmed into the receiving codec, and will be required on the outbound side for proper connection. Since Switchboard provides its own connection filtering, passwords are not normally used in this mode.
3. **Profile** - Choose one of the factory supplied or custom built profiles for this connection. This defines encoders used in both directions, along with a long list of other parameters. See the Profile section in the setup section for more. If none is specified, the profile designated as default will be used.
4. **Backup/Fall Forward settings** - Described in section “Making Manual Connections”.

![Figure 32 SWITCHBOARD PEER REMOTE](image)

49
Once your Switchboard peers are configured, connecting to one is simple:

1. Select the desired Switchboard peer.
2. Make sure the “gear” icon is green.
3. Click “Connect” in the upper right corner.

Switchboard connections can be ended on either end of the link, by choosing the active connection in the list and clicking “Disconnect”.

Incoming connections will appear as new entries in the Switchboard peer list while they are active. They can be disconnected the same way.
IX. MAKING MANUAL CROSSLOCK CONNECTIONS

CREATING NEW REMOTES

When connections are added to the list manually, we call them “remote entries,” or “remotes” for short. To create a new remote connection, click on the “Plus Sign” (+) on the right of the screen (1 in Figure 33) to Add A New Remote Connection. This will bring up a dialogue box where a new remote’s parameters may be defined (Figure 33).

![Remote settings dialog box]

Choose a name for the remote (e.g. WXYZ), followed by the IP address of the remote. If there’s a non-standard port being used on the receiving codec (e.g. MultiRack instances #2-5), you’ll need to apply it here after the IP address (e.g. 192.168.7.23:9004). This is particularly true when connecting to an ACCESS MultiRack, where each instance beyond instance #1 at UDP 9000, instances #2-5 will be configured to a different UDP that must be directed to in a new remote entry.

Choose whether this connection will use the CrossLock protection layer. For manual connections, this requires special configuration on each end of the link to authorize CrossLock between the codecs. See the section below about special notes for CrossLock connections.

The Switchboard ID field is only required when using the CrossLock function without the Switchboard server. For most codecs, this is the primary Ethernet MAC address of the far side codec. If you are at Firmware 4.5 and newer and connecting to an ACCESS MultiRack instance, you may need an additional step. Add the instance number suffix as a “-x” to the end of the unit’s Switchboard ID (MAC Address) to designate the instance ID (e.g. Instance 4 as: 00:01:0c:c0:78:12-4).

The Connection Password function can be used to filter incoming connections. With this function, attempted incoming connections will be rejected without the proper case-sensitive password. For outgoing connections, the password is entered when the remote is created during the Add New Remote process. For incoming connections, the password is set on the System Settings tab. There is no way to retrieve a forgotten password. The only way to address a forgotten password is to change it.

Remotes require selection of a codec profile as seen in Figure 34. The ACCESS Rack includes several factory profiles to choose from, each of which enable a full-duplex link. Factory-provided profiles offer commonly used encoders and settings. Depending on use and environment, custom profiles can be made in the Profile Manager tab (Figure 40). See the section on Profile configuration for more on this. Once defined on the Profile Manager tab, the new profiles will be available in the Select Profile window and can be assigned to an outbound remote.
BACK UP REMOTE

ACCESS Rack features an ability to have an automatic backup to a designated remote connection. A specific backup connection (for when the primary fails) is designated when a new remote is created. As shown in Figure 35, selecting the backup option opens a menu, allowing selection of other outgoing remotes that have been created.

The Backup Remote feature works in conjunction with a remote’s Local Timeout parameters defined in the primary remote’s profile. ACCESS Rack can sense an IP Connection failure, and will wait the defined Local Timeout parameter in the primary remote’s profile. If the connection is restored during this time, no backup will occur. If the timeout lapses without re-connection to the primary remote, ACCESS Rack will automatically connect to the designated Backup Remote. This connection will be retained until the connection is either manually terminated or the Fall Forward function reestablishes connection to the primary remote.
If the primary remote is restored and ACCESS Rack can detect a valid signal, it will automatically disconnect the backup and revert back to the primary remote. To enable Fall Forward, click the “Fall Forward” option in the Edit Remote Settings prompt and select Yes (Figure 35).

CONNECTING AND DISCONNECTING

Once the remote connection entry is completed in the Connections Tab, highlight the remote and select Connect. When a connection is attempted, the State column in the connection table will change to reflect the progress of the connection (Figure 36). If the connection fails, the reason for the connection failure will be shown in the State column. When the remote connection succeeds, the encoder and decoder mode will be reflected in the Rx Status/Tx Status column. To end a connection, highlight the remote and select Disconnect.

![Remote Connection Status Table](image)

FIGURE 36 REMOTE CONNECTION STATUS

SPECIAL NOTES FOR MANUAL CROSSLOCK CONNECTIONS

Manual CrossLock connections require special configuration options on both sides of the link. This primarily involves programming the Switchboard ID for each unit (or primary Ethernet MAC address) into the outgoing settings on the codec on opposite side of the link. This process for outgoing calls is described above. What isn’t mentioned is also important: The MAC/Switchboard ID of the outgoing unit must also be programmed into the unit receiving the call.

Note that if connecting to an ACCESS MultiRack, instances #2-5 have special Switchboard IDs consisting of the primary Ethernet MAC followed by a “-x” suffix (e.g. 00:01:0c:c0:78:19-4 for instance #4).

This is done by creating an outgoing connection describing the far-end unit, even if it is never actually used for outgoing calls. In the case of this “dummy” entry, it’s not actually important for the IP address field of the far-end unit to be correct. The entry must be enabled for CrossLock operation and it must have the correct Switchboard ID/MAC address of the far-end unit.

In the special circumstance where the default CrossLock port of UDP9001 can not be used (e.g. several ACCESS Rack codecs sharing a single IP address), then manual CrossLock connections get extra complex. For more information on these settings, refer to the Technote “Making CrossLock connections on non-standard Ports”.

53
x. SETTING UP YOUR SWITCHBOARD ACCOUNT

The **Switchboard Traversal Server** is a service built and maintained by Comrex on the public Internet that provides users a directory of other users, facilitating connections to devices that would normally have trouble accepting incoming IP connections. Use of **Switchboard** is free and comes activated from the factory. Use the instructions in the user interface chapters of this manual to configure **Switchboard** on the ACCESS Rack unit. The following sections describe how to set up and configure your **Switchboard** account online.

LOGGING IN AND SETTING UP SWITCHBOARD

In order to use Switchboard, users must first have an account with the server. This account can be obtained by contacting Comrex at 978-784-1776 / 800-237-1776, or by emailing techies@comrex.com / info@comrex.com. Only one account is required for each group of codecs. Once a username and password are provided, navigate to switchboard.comrex.com in a web browser. When first accessing Switchboard, there will be a notice stating that no units have been added to the account. Clicking on **Add New Unit** will open a dialogue box that asks for the Switchboard ID (Ethernet MAC address) of the ACCESS Rack (Figure 37).

![Add New Unit](image)

FIGURE 37 ADD NEW UNIT

After inputting each remote’s Switchboard ID (MAC address), it will populate in the unit list (Figure 38). At this point is necessary to break the network connection to the codec (by rebooting it or disconnecting the network connection for several seconds) in order for the device to properly sync with Switchboard.

![Switchboard Unit List](image)

FIGURE 38 SWITCHBOARD UNIT LIST
Note: MultiRack instances must be added to Switchboard individually. Instance 1 Switchboard ID is the same as the unit MAC Address, while Instances 2-5 use the same MAC address, with a suffix added to designate the instance. As an example, if the primary Ethernet MAC address on a MultiRack is 00:01:40:c0:0d:15, that’s the ID input for MultiRack instance #1. Instance #2 is added as 00:01:40:c0:0d:15-2, instance #3 uses -3, etc.

CREATING USERS

It is possible to add additional Switchboard users who can access the Switchboard interface. This is done via the **Users** tab at the top of the main codec list (Figure 39). This allows for the creation of accounts for users that can later be deleted. Several user accounts can be created with unique passwords.

![Figure 39 USERS TAB](image)

CONTACT LISTS

In some situations, it might not be desirable for every codec to see the Switchboard status of every other codec. To help filter what’s displayed on a codec’s interface, Switchboard has implemented the concept of **Contact Lists**. Contact Lists contain a subset of a user’s codec fleet on their account (Figure 40). Users can create multiple Contact Lists that consist of different subsets. With the exception of Shares (discussed next), only units within a user’s Switchboard account may be assigned to Contact Lists.

![Figure 40 CONTACT LIST](image)
By default, a master Contact List is created that contains all codecs in an account. Every codec in the fleet uses the master list by default. For users uninterested in segregating codecs on their account, the default configuration will work fine.

NOTE: Assigning a Contact List to a codec determines what gets displayed in its own list. It does not have any impact on how that codec is displayed on other devices.

FOLLOWING CONTACT LISTS

Each unit also has the ability to **Follow** a Contact List. This is a view-only function that allows a codec to see the status and presence of units in a Contact List. All units are set to Follow the master Contact List by default.

![Figure 41 Switchboard Main Screen](image1)

FIGURE 41 SWITCHBOARD MAIN SCREEN

![Figure 42 Unit Screen](image2)

FIGURE 42 UNIT SCREEN

To follow a Contact List on a codec, first click on the “Details” button for that codec on the main screen in Switchboard (Figure 41). Next, press the “Change” button near the middle of the following screen (Figure 42).
On the next screen, check the Contact List(s) that you want this codec to Follow and press “Update Contact List” (Figure 43).

One important point to remember: Following a Contact List on a codec only determines which units get displayed on that codec’s own list. It has no impact on how that codec itself is displayed on other devices.

SHARES

Switchboard users outside of an account can be granted permission to see the status of others’ devices through the implementation of Shares, which, like Contact Lists, are also subsets of a user’s codec fleet that can be defined. Other Switchboard accounts can be added via Shares, allowing codecs to become visible across accounts.
To create a Share, click the Sharing tab and then select “Add New Share” (Figure 44).

The following screen then allows users to choose which codec(s) they want to include in a Share (Figure 45). After making a selection, users will need to enter one of the following to identify the account they wish to Share their unit(s) with: the official name of that account as it’s listed in Switchboard or the email address for the account’s administrator, which must match the email Switchboard has for that user (Figure 46).

An email will then be sent from the server asking the user to confirm the Share. Once they’ve confirmed the Share, the Shared devices will appear as options in their contact list menu.

Please note: Shares are a one-way transaction. For shares to work both ways, with each user able to view each other’s devices, both users must send each other a Share invitation and then each accept the other’s invitation (as illustrated in Figure 47). Just as with normal units within a Switchboard account, an external user must then add a Shared unit to a Contact List in order for it to be visible to other units in their fleet. This is true even if they’re only using the single default Contact List.
Finally, while it is possible to delete Shares, Comrex recommends disabling them instead. This will stop the Share and won’t require any future work to recreate it. To disable a Share, simply click the orange Disable button on the bottom right of the Share edit page (Figure 48).

MANAGING MULTIPLE CONTACT LISTS

While most people will only use the default Contact List, it is possible in Switchboard to create and Follow multiple Contact Lists as well as to manage them from a codec’s user interface.
If multiple Contact Lists have been designated as “Followed” on a unit’s Switchboard interface, each Contact List will appear at the bottom of the Connections tab (Figure 49). To view and/or connect to the unit(s) within a list, select the list and press the Open Folder button on the upper right.

FIGURE 50 VIEWING LIST DEVICES

While viewing the units in a list, the units will be displayed and the lists themselves will temporarily disappear from the screen. To view the lists again, press the red “Back” arrow as seen in Figure 50.

Please note: Only Contact Lists a codec is actively following can be viewed from that codec.

BULK ACTIONS FOR CONTACT LISTS

It is possible in Switchboard to perform actions that impact all codecs in a given Contact List in a single step called a Bulk Action.
To do this, press the **Bulk Action** button in the bottom right corner of the Contact List tab (**Figure 51**).

The three steps to create a Bulk Action are:

1. Choose the type of action to perform.
2. Select the codecs targeted with this change.
3. Identify the Contact List that will be impacted by the change.

Step 1: Choose the Action Type

First, select which of the four types of Bulk Actions to perform (**Figure 52**):

- ADD codecs to a Contact List;
- REMOVE codecs from a Contact List;
- SUBSCRIBE to a Contact List (i.e., have multiple codecs **Follow** that list);
- UNSUBSCRIBE from a Contact List (i.e., have multiple codecs **stop Following** that list).

Step 2: Select the Target Codecs

Next choose which list of codecs to target with this Bulk Action (**Figure 53**).
After completing this step, specify whether to target the units that are a part of a Contact List or the units that are Following that list (i.e., the option in the yellow-outlined box on the middle-left of the above figure).

Note: Bulk Actions can ONLY be performed on ENTIRE Contact Lists. They CANNOT be performed on individual codecs or on a portion of a Contact List. This means that a Bulk Action will affect ALL of the codecs that are either part of a Contact List or are Following that list.

To only change a subset of the codecs in a list, try creating a new Contact List with only those units in it, and then perform the Bulk Action using that list.

Step 3: Identify the List That Will Be Changed

Lastly, choose the Contact List that will be affected by this Bulk Action. This will be the list that will have codecs added to it or removed from it, or which will have codecs Follow it or stop Following it. When completed, press the Send Bulk Action button (Figure 54).

![Bulk Contact List Assignment](image)

FIGURE 53 BULK DEVICE SELECTION

FIGURE 54 SEND BULK ACTION
Switchboard Theory and Concepts

Switchboard is useful because it’s not always simple to connect two devices which are essentially “peers” over the Internet. There are two major reasons for this. First, to initiate a stream to a device over the Internet requires knowing its IP address. This is the number that gets applied to the destination field of the IP packet, so Internet routers can determine how best to send it along its way. Every device that connects directly to the public Internet must have one.

However, when web browsing, or sending email, this information is usually hidden from the user. In the traditional client/server scenario, such as web browsing, a Uniform Resource Locator (URL) is used to represent the IP address of the web page (which is decoded by a DNS server). Once a computer requests a web page from a web server, the web server can automatically derive the reply address from the request and respond to it. So the traditional four-segment decimal address (e.g. 70.22.155.130) is completely obscured to the user.

Even if you know your IP address, it’s quite possible that address will change over time. This is because the vast majority of internet users establish their addresses via DHCP, a protocol whereby a server (maintained by the ISP) will deliver one of their available addresses to the client on initial connection. That address is “leased” from the server for a particular time period. After the “lease” expires, the server is free to change it.

The commonly used Network Address Translation (NAT) router adds to the confusion, making codecs even harder to find. Most LAN-based Internet connections (as opposed to computers connected directly to ISPs) actually negotiate with a local router containing its own DHCP server. This router assigns the LAN computer or device a “private” IP address (Figure 55).

![Local Area Network Diagram]

FIGURE 55 LOCAL AREA NETWORK
The challenges of connecting codecs behind NAT routers will be addressed in more detail shortly. For now, remember that one of the problems NAT servers add is that private IP addresses delivered to codecs (and the only addresses of which the codecs are aware) have no bearing on the public addresses seen from the Internet. In extreme scenarios, several layers of address locality can be stacked, assuring that the IP address assigned to a device is several degrees removed from the public IP address used for connections. Also, each address in the stack is temporary and able to change at any time.

Before deployment of Switchboard, the answer to this dilemma was to assure that the codec located in the studio had a fixed, public IP address. This meant that the address was allocated exclusively by the ISP, and that address was entered manually into the configuration of the codec and not subject to change. This scenario worked because IP “calls” are usually initiated from the field. As long as the field unit can find the fixed address of the studio unit and send a stream to it, a reverse channel can be created easily and automatically by the studio unit, using the source information contained in the incoming packets. In this scenario, the studio IP address must be memorized or input into each codec individually.

The first function Switchboard works around is the dynamic IP address problem by acting as a Directory Server. Codec users simply log in to the free server and are given an Account, username, and password. Once logged in, it’s a simple process to input the details of each owned codec. On the codec itself, the user should input a familiar name by which the codec will be known within that group.

Once enabled, a codec in a group that is physically connected to the Internet will sync with the server. The current public IP address of the codec will be obtained by the server and the user directory will be updated with the new IP address. In addition, the availability status of the codec is also updated. The codec will “ping” the server if anything changes (address, status, etc.). As we’ll see, this “ping” function will prove useful in other ways.

Once the codec has updated its status with the server, it’s time to download the directory. This process happens instantly. The update includes current addresses and status info for all codecs within the group. This information forms a “Buddy List” of sorts that gets integrated into the codec’s connection address book. The list may still consist of entries made manually by IP address into the codec, but those are signified by different icons. Current status of each codec is reflected by graying out entries which are not currently connected or that haven’t been synchronized to the server.

If IP addresses should change, the codec will re-sync with the server from the new address, and all will be updated automatically. Connections can be made by simply clicking on the correct name, without any updating on the part of the user.

The other roadblock provided by the use of NAT routers is the inability to accept unsolicited incoming connections from the Internet. Generally, this function acts as a rudimentary firewall and is a net positive for security, but it does cause headaches for codec users. A router that receives a connection request doesn’t have a clue where to forward that stream unless it has specific instructions programmed into it. These instructions are known as “port forwarding”.

64
This can work well for fixed installations, but it’s not always an easy task to obtain that kind of security access on corporate routers. Additionally, forwarding functions are implemented differently depending on the hardware. One can easily imagine the complications of obtaining or managing port forwarding on the LAN when arriving at a new remote venue. This would likely encounter a large amount of resistance or confusion on the part of local IT staff.

In describing NAT routing, it’s important to understand the concept of ports. These are numbers, like the source and destination IP addresses that are attached to each packet. They further qualify which application on a computer (or codec) is meant to send or receive a packet.

In a typical codec application, Codec X will send a packet from Address A Port B, to Address C Port D on the Destination Codec Y. A codec that has multiple applications running (like streaming audio while simultaneously serving a configuration web page) would deliver these applications from, and to, different port numbers, but perhaps to the same IP address. Port numbers are also used by NAT routers in segmenting applications flowing through them and they may change source port numbers at will (Figure 56).

FIGURE 56 NAT TRAVERSAL

Network Address Translation (NAT) refers to the ability of a router to translate requests from computers (or codecs) within its LAN onto the public internet. On its most basic level, this involves replacing the private “source” or return IP address in each packet with the true public IP and remembering where that packet was sent. This insures that any response can be forwarded back to the proper device.
A good way to think of this is that an outgoing packet “punches a hole” in the router, through which authorized reply packets may be returned to the codec for a limited time (Figure 57).

Switchboard aids in breaking through these different types of routers for incoming calls. Because it is in constant contact with all subscribed codecs, it can send and receive test patterns to determine whether one or more NAT routers exist on a link and what type they are. It can then choose a connection method to be used to circumvent any issues. Switchboard can:

- Instruct the calling codec to make a normal connection (no NAT detected).
- Use the hole punched by connection to the Directory Server for incoming connections from other codecs.
- Instruct the called codec to make the connection in the reverse direction.

The second option, which utilizes the outgoing Directory Server “ping” described earlier, is very useful. The interval of this ping is adjustable, but defaults to about one minute, which is short enough to keep a hole punched through the majority of NAT routers.

These techniques are based loosely, with enhancements, on a generic Internet protocol called STUN (Simple Traversal of UDP through NAT). The system works well in all environments except one: when both users are sitting behind a symmetric NAT. In this situation, calls will fail even with Switchboard. The only option in that environment is to resort to port forwarding on one side of the link.
XI. OPERATING ACCESS RACK IN A 24/7 ENVIRONMENT

ACCESS Rack can be configured for “always on” operation. This allows for constant STL communication and operations requiring long-term connections.

In BRIC Normal mode (the default mode of operation), ACCESS Rack transfers all its audio data via the UDP 9000 protocol. This is in contrast to most web-based connections like browsing and email, which use the bidirectional TCP protocol. UDP, unlike TCP, is not “connection oriented” (i.e., no virtual connection actually exists in this protocol layer between the devices). In UDP, the transmitter simply launches packets into the network with the correct address, hoping the network will make its best effort to deliver the packets in a timely fashion. If a packet is delayed or lost, no error message is sent from the receiving unit and no packets are retransmitted. It is up to the receiver to cover up any lost data, if possible. This allows the Internet to deliver packets with the smallest amount of overhead and delay. As there is no coherent connection built between the codecs, there isn’t any connection to break in the event of network failure. The encoder simply propels packets into the network, regardless of whether they arrive. If the network fails and is later restored, the packets stream will be restored to the decoder.

For most applications like remote broadcasting, it’s useful to simulate a connection-oriented stream, so ACCESS Rack uses a low-bandwidth sub channel to deliver information back to the encoder about overall connection status. It does this in its “application layer”, rather than the “transport layer” where UDP exists. By default, it monitors the health of a connection and if no data is detected as received by the decoder for 60 seconds (this is a user defined timeout), it “tears down” this connection and reverts to an idle state. This indicates to the user that the network has failed and the problem must be addressed.

The benefit in having the connection protocol in the application layer is that its use is optional. For 24/7 operation, there’s no advantage to the connection ending if no data is received for the timeout interval.

ALWAYS CONNECT TO

To set ACCESS Rack for 24/7 operation, several parameters are changed:

1. The timeout value is set to infinity; the connection will never be torn down regardless of data status.
2. ACCESS Rack is configured to re-establish the connection in the event of a power-up.
3. The local Disconnect control is disabled. The Disconnect function on the receiving side is still enabled, but will result in an immediate re-connection by the initiating side.

As seen in Figure 58, under Connections in the System Settings tab (with “Show Advanced Options” selected), there is an Always Connect To option with a pull-down menu of your unit’s available connections. Selecting “ON” in these remote connections will configure the unit for 24/7 operation to that remote. (No configuration is necessary on the remote side.)
FIGURE 58 ALWAYS CONNECT TO SETTING

BACKUP REMOTE

ACCESS Rack has an additional option for constant connections. When building a remote entry, a field is available for backup options, and one of these options is “Keep Retrying This Remote” mode. In a similar fashion, using this mode will allow the unit to disregard the timeout value and keep a persistent connection attempt. The difference is that the Disconnect function still works and the connection will not be re-initiated on a power-up. This mode is meant for users who are making longer term temporary connections, and do not want the system to time out and disconnect in the event of network failure.

The ACCESS Rack has the capability to automatically make a backup IP connection if there is a failure in the primary connection. This is called **Fallback**, and is an option chosen after defining a new Remote connection.

FIGURE 59 BACKUP REMOTE

As shown in Figure 59, highlight an existing connection (this will be the primary connection) and choose **Change Remote Settings**. In the pop up window, a pull-down box is available to allow selection of a fallback connection from the list of existing remotes.

After connection, if data is stopped on the primary connection for the length of the timeout value (set in the connection’s profile), a connection will be attempted and maintained to the fallback remote.
Additionally, there is a box in the Change Remote Settings tab labelled Automatically fall forward. If this box is checked, the system will constantly attempt to reconnect the primary remote while connected to the fallback remote. If connection is successful, the connection to the "Fallback" will be terminated.
xii. POTS CONNECTIONS

ACCESS Rack is capable of connections over modem links. This mode emulates the function of Comrex POTS (Plain Old Telephone Service) codecs, which have been used for years to deliver high-quality audio over standard, dial-up telephone lines. This mode provides for a point-to-point connection between the codecs (i.e., no Internet where ACCESS Rack is used) and the call is placed directly from one ACCESS Rack (or legacy codec) to the other.

Please note: Backward compatibility to Comrex Hotline codecs is not supported.

POTS CODEC SET-UP FOR ACCESS RACK COMPATIBILITY

Comrex legacy codecs (Matrix, Vector or BlueBox) must be configured for operation in Music Mode, which will allow full-fidelity (up to 15 kHz) connections. Voice Mode is not supported by ACCESS Rack. Contact closures and ancillary data supported by legacy codecs are not supported by ACCESS Rack.

ACCESS Rack requires that outgoing POTS connections be defined on the Connections Tab. When defining any outgoing connection, a profile must be assigned to it. For POTS Codec compatible connections, the factory default POTS Profile should work best. Note: When creating a profile, designate the modem mode as POTS Codec rather than POTS Stereo in order to be compatible with legacy devices (Figure 60).

USING ACCESS RACK WITH POTS

To use ACCESS Rack on POTS, a standard, analog telephone line must be connected to the rear panel’s RJ-11 connector. If possible, obtain a true telephone company grade line. Under no circumstances should the raw extension from a digital phone system be attached to this port—this will damage ACCESS Rack, the phone system, or both.

To initiate calls from ACCESS Rack, simply create a remote connection with a telephone number as the address, rather than an IP, in the Connections Tab. A POTS-based profile must be designated for this remote.

RATE DROP VS. RETRAIN

When incoming or outgoing POTS calls are active, the Connections Tab changes slightly. There will be two additional buttons that appear on the tab: Retrain and Rate Drop. These are special functions applicable only to POTS calls, and are not visible during IP connections.

Rate Drop and Retrain controls are similar in function to those provided on POTS codecs. ACCESS Rack will initially connect at the best data rate supported by the telephone line, and will display this rate on the Connections Tab page.
Selecting **Rate Drop** will force the system to drop to the next lowest connect rate at any time. Audio transfer will be interrupted momentarily while the units negotiate the new connect rate. Alternately, **Retrain** will force the system to initiate the entire training sequence again (the “chat” sounds heard at the beginning of a call). Audio loss will occur for a longer time (approx. 7 seconds) but the modems will completely re-equalize the connection and return audio when finished.

Once ACCESS Rack has dropped to a lower rate, either by **Rate Drop** or **Retrain** from either end, there is no way to force it to connect at a higher rate. If a higher connection rate is desired with ACCESS Rack, disconnect the call and dial again.

TROUBLESHOOTING A POTS CONNECTION

There are dozens of factors that can affect the success of a **POTS** codec call, some within the user’s control and some not. Here’s a short list of rules to follow for **POTS** codec connections:

- Use the **POTS** codec on a direct telephone company line and avoid in-house phone systems. A line used by a fax machine usually provides this directly to ACCESS Rack. (Be sure to disconnect the fax machine before connecting the codec!)
- Check to see that there are no extensions or modems on the line—or at least arrange that no one uses these during a broadcast.
- If there is call-waiting on the line, disable it by entering “*70” in front of the number being dialed.
- If possible, try the **POTS** codec out at the remote site prior to an actual broadcast at about the same time of day as planned use. This will assist in determining expected connection rates and possible line problems.
• At minimum, connect a few minutes before airtime to assess the connection quality. Setting a MaxRate on the POTS codec is highly recommended. MaxRate usually should be set at a level or two below the maximum unrestricted rate. This will provide a “guard band” against noise and distortion which may cause errors on the line.

• If operation starts to degrade after a long period of connection, it’s possible the phone line parameters have changed. These parameters are affected by factors such as time of day, weather, and geographic location. The modems should be given the opportunity to renegotiate for these new parameters.

• When experiencing low connection rates or errors, try re-dialing. If that does not help, dial from the other end. If the call is long distance, forcing the call to another carrier may resolve the issue.
When building profiles for ACCESS Rack and remote devices, there are several different audio encoder options to use for each direction of the link. Different audio encoder options each have advantages and disadvantages depending on the situation. The following is a refresher on audio codec algorithms to assist in making the best choice.

AAC

This algorithm is a highly regarded standard for compressing audio to critical listening standards. It has been judged to produce “near transparent” audio at a coding rate of 128 kb/s stereo. The standard is a collaborative of several audio companies’ best efforts, and has become popular as the default audio codec of the [Apple™ iTunes™ program](#). AAC should be considered the highest quality codec in BRIC-Link II. Enhancements like HE-AAC attempt to maintain a similar quality with reduced bandwidth and delay.

HE-AAC

This is a newer version of AAC designed for increased efficiency. The goal of this algorithm is to produce AAC-comparable quality at a lower bit rate. It does this by encoding lower frequencies to AAC, and higher frequencies using Spectral Band Replication (SBR). SBR is a technique that partially synthesizes these high frequencies. HE-AAC is trademarked by other companies as AACPlus™. HE-AAC (and close derivatives) is often used as the main audio codec for digital radio and satellite networks.

HE-AACV2

This algorithm further increases the efficiency of HE-AAC by adding intensity stereo coding. This results in a lower bit rate for stereo signals. Reduced rate HE-AAC mono is grouped into this category, although it does not contain v2 coding.

LINEAR PCM

This encoder does not compress audio at all. It uses a 48 kHz sampling rate (using analog inputs or 48 kHz AES3) and applies small frames of linear audio to IP packets. This mode is only useful on high-bandwidth LAN or managed WAN environments. Mono Mode requires a network capacity of 804 kb/s while Stereo (Dual Mono) Mode requires a network bandwidth over 1.56 Mb/s.

In Linear PCM, if the input AES3 sampling rate is 32 kHz or 44.1 kHz, the network stream will also run at this rate and the required bandwidth will be lower.
FLAC

This encoder compresses audio data using a lossless algorithm. This means that the audio extracted from the decoder is identical to the audio input to the encoder, with no coding artifacts. FLAC typically removes 30-40% of the network data compared to Linear PCM, but the actual data rate is variable and is based on the complexity of the coded audio.

Using FLAC over Linear PCM typically results in a slightly higher (5 ms) overall delay.

G.722

This is a well-known 7 kHz (medium fidelity) algorithm used in some VoIP telephones and codecs. It is provided for compatibility purposes, and is not considered a superior algorithm for audio codecs.

Opus

A newer offering that combines low delay and low network utilization. Opus is included primarily for compatibility with softphone apps, and Internet connections using WebRTC (see Technotes about WebRTC on the Comrex website). Special CBR modes are offered for compatibility with Tieline products—avoid these in other applications. Due to its versatility in audio quality and low networking drain, Opus is the default profile for Comrex codecs.

Linear PCM and FLAC are only supported for CrossLock connections on devices running 4.3-p4 firmware or higher.
<table>
<thead>
<tr>
<th>Required Bitrate</th>
<th>Coding Delay</th>
<th>Audio Bandwidth</th>
<th>AAC: Provides near transparent audio at relatively high data rates. Best used on non-constrained data networks - for situations where latency is not important.</th>
</tr>
</thead>
<tbody>
<tr>
<td>64 kb/s</td>
<td>69 ms</td>
<td>20 kHz</td>
<td>D1 Mono</td>
</tr>
<tr>
<td>96 kb/s</td>
<td>69 ms</td>
<td>20 kHz</td>
<td>D2 Stereo</td>
</tr>
<tr>
<td>128 kb/s</td>
<td>69 ms</td>
<td>20 kHz</td>
<td>D3 Dual Mono allows independent programming to be sent on both L&R channels</td>
</tr>
<tr>
<td>128 kb/s</td>
<td>69 ms</td>
<td>20 kHz</td>
<td>D4 Stereo 128Kb</td>
</tr>
<tr>
<td>256 kb/s</td>
<td>69 ms</td>
<td>20 kHz</td>
<td>D5 Dual Mono 256Kb allows independent programming to be sent on both L&R channels</td>
</tr>
<tr>
<td>56 kb/s</td>
<td>69 ms</td>
<td>20 kHz</td>
<td>D6 Mono 56Kb</td>
</tr>
<tr>
<td>96 kb/s</td>
<td>69 ms</td>
<td>20 kHz</td>
<td>D7 Mono 96Kb</td>
</tr>
<tr>
<td>160 kb/s</td>
<td>69 ms</td>
<td>20 kHz</td>
<td>D8 Stereo 160Kb</td>
</tr>
<tr>
<td>HE-AAC: Provides near transparent audio at low data rates - for situations where latency is not important.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48 kb/s</td>
<td>146 ms</td>
<td>20 kHz</td>
<td>E1 Mono</td>
</tr>
<tr>
<td>64 kb/s</td>
<td>146 ms</td>
<td>20 kHz</td>
<td>E2 Stereo</td>
</tr>
<tr>
<td>96 kb/s</td>
<td>146 ms</td>
<td>20 kHz</td>
<td>E3 Dual Mono allows independent programming to be sent on both L&R channels</td>
</tr>
<tr>
<td>Linear PCM: Delivers transparent audio with no compression and very low delay - for use on high throughput networks.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>768 kb/s</td>
<td>19 ms</td>
<td>20 kHz</td>
<td>F1 Mono</td>
</tr>
<tr>
<td>1536 kb/s</td>
<td>19 ms</td>
<td>20 kHz</td>
<td>F2 Dual Mono</td>
</tr>
<tr>
<td>512 kb/s</td>
<td>19 ms</td>
<td>15 kHz</td>
<td>F3 Mono</td>
</tr>
<tr>
<td>1024 kb/s</td>
<td>19 ms</td>
<td>15 kHz</td>
<td>F4 Dual Mono</td>
</tr>
<tr>
<td>HE-AAC V2: Provides medium quality Hi-AAC implementation using Spectral Band Replication.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 kb/s</td>
<td>212 ms</td>
<td>12 kHz</td>
<td>G1 Mono 18kb</td>
</tr>
<tr>
<td>24 kb/s</td>
<td>269 ms</td>
<td>12 kHz</td>
<td>G2 Stereo 24Kb adds Parametric Stereo to SBR for higher quality audio at low data rate</td>
</tr>
<tr>
<td>32 kb/s</td>
<td>184 ms</td>
<td>20 kHz</td>
<td>G4 Stereo 32Kb adds Parametric Stereo to SBR for higher quality audio at low data rate</td>
</tr>
<tr>
<td>48 kb/s</td>
<td>184 ms</td>
<td>20 kHz</td>
<td>G3 Stereo 48Kb adds Parametric Stereo to SBR for higher quality audio at low data rate</td>
</tr>
<tr>
<td>56 kb/s</td>
<td>184 ms</td>
<td>20 kHz</td>
<td>G5 Stereo 56Kb adds Parametric Stereo to SBR for higher quality audio at low data rate</td>
</tr>
<tr>
<td>AAC-LD: Requires higher data rates but provides near transparent voice or music with low delay.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96 kb/s</td>
<td>30 ms</td>
<td>20 kHz</td>
<td>I1 Mono</td>
</tr>
<tr>
<td>128 kb/s</td>
<td>30 ms</td>
<td>20 kHz</td>
<td>I2 Stereo</td>
</tr>
<tr>
<td>192 kb/s</td>
<td>30 ms</td>
<td>20 kHz</td>
<td>I3 Dual Mono allows independent programming to be sent on both L&R channels</td>
</tr>
<tr>
<td>256 kb/s</td>
<td>30 ms</td>
<td>20 kHz</td>
<td>I4 Stereo 256Kb</td>
</tr>
<tr>
<td>128 kb/s</td>
<td>30 ms</td>
<td>20 kHz</td>
<td>I6 Mono 128Kb</td>
</tr>
<tr>
<td>64 kb/s</td>
<td>30 ms</td>
<td>20 kHz</td>
<td>I7 Mono 64Kb</td>
</tr>
<tr>
<td>~537 kb/s</td>
<td>26 ms</td>
<td>20 kHz</td>
<td>J1 Mono</td>
</tr>
<tr>
<td>~1075 kb/s</td>
<td>26 ms</td>
<td>20 kHz</td>
<td>J2 Dual Mono</td>
</tr>
<tr>
<td>~358 kb/s</td>
<td>26 ms</td>
<td>15 kHz</td>
<td>J3 Mono</td>
</tr>
<tr>
<td>~717 kb/s</td>
<td>26 ms</td>
<td>15 kHz</td>
<td>J4 Dual Mono</td>
</tr>
<tr>
<td>Opus: A newer offering that combines low delay and low network utilization. Opps is included primarily for compatibility with softphone apps and internet connections using WebRTC. (Special CBR modes are offered for compatibility with Terine products - avoid these in other applications).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48Kb/s</td>
<td>47 ms</td>
<td>20 kHz</td>
<td>N1.1 Mono 48kbps</td>
</tr>
<tr>
<td>56Kb/s</td>
<td>47 ms</td>
<td>20 kHz</td>
<td>N2.2 Mono 56Kbps</td>
</tr>
<tr>
<td>64Kb/s</td>
<td>41 ms</td>
<td>20 kHz</td>
<td>N4.3 Mono 64Kbps</td>
</tr>
<tr>
<td>64Kb/s</td>
<td>41 ms</td>
<td>20 kHz</td>
<td>N5.1 Stereo 64Kbps</td>
</tr>
<tr>
<td>64Kb/s</td>
<td>41 ms</td>
<td>20 kHz</td>
<td>N5.2 Stereo 96Kbps</td>
</tr>
<tr>
<td>128Kb/s</td>
<td>41 ms</td>
<td>20 kHz</td>
<td>N5.3 Stereo 128Kbps</td>
</tr>
<tr>
<td>48Kb/s</td>
<td>41 ms</td>
<td>20 kHz</td>
<td>N6.1 CBR Mono 48Kbps</td>
</tr>
<tr>
<td>64Kb/s</td>
<td>41 ms</td>
<td>20 kHz</td>
<td>N6.3 CBR Mono 64Kbps</td>
</tr>
<tr>
<td>64Kb/s</td>
<td>41 ms</td>
<td>20 kHz</td>
<td>N7.1 CBR Stereo 64Kbps</td>
</tr>
<tr>
<td>64Kb/s</td>
<td>41 ms</td>
<td>20 kHz</td>
<td>N7.2 CBR Stereo 96Kbps</td>
</tr>
<tr>
<td>128Kb/s</td>
<td>41 ms</td>
<td>20 kHz</td>
<td>N7.3 CBR Stereo 128Kbps</td>
</tr>
<tr>
<td>VoIP: G.722 codec algorithm for compatibility with SIP-style VoIP phones.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64 kb/s</td>
<td>35 ms</td>
<td>7 kHz</td>
<td>K3 G.722</td>
</tr>
</tbody>
</table>

FIGURE 61 ALGORITHM PROFILES
ACCESS Rack supports the ability to run one encoder per connection, but this single encoder stream may be sent to up to three destinations simultaneously. This capability is referred to as a Multistream, as the encoder creates a separate but identical outgoing stream to each decoder. (Note: A User’s Internet connection must be able to support these streams.) For example, if an encoder runs at 35 kb/s network utilization, sending to two locations will require 70 kb/s upload speed from the network.

Multistreaming should not be confused with IP Multicast, which is described in the next section. Each ACCESS Rack can only run one decoder, so it’s important that in a Multistream environment, a maximum of one stream is sent in the reverse direction. This means that users interested in hearing a Multistream must turn off their encoders. This can be a bit confusing because Multistream can be initiated from either end of the link.

Figure 62 shows an ACCESS Rack Multistream arrangement. ACCESS Rack A is the Multistreamer, with ACCESS Rack B, C, and D listening to the same audio. In order to set up a Multistreaming scenario, the ACCESS Rack encoders must be turned Off. This is done by building a profile with either the Local or Return Transmitter mode set to Off, as shown in Figure 63.
MULTISTREAMING ARRANGEMENTS

The following includes two examples of Multicast arrangements involving the ACCESS Rack. In the first environment, the ACCESS Rack that is serving the Multicast initiates calls, and in the second, the serving ACCESS Rack accepts all of the incoming connections.

ACCESS RACK INITIATES THE CALL

In the “Multistreamer as caller” model, two different profiles will be built on ACCESS Rack A. The first profile, labelled “Multi-Duplex”, will be defined as a standard, duplex ACCESS Rack connection. The encoder to be used will be selected in the Local Encoder section, and the stream desired in return will be defined in the Remote Encoder section.

The second profile is called “Multi-Simplex” and in this profile the Remote Transmitter is turned Off. Most other selections in this profile are irrelevant. User A will define remote connections for ACCESS Rack B, C, and D. They will assign the “Multi-Duplex” profile to ACCESS Rack B, and “Multi-Simplex” profile to the others. They will then establish a connection with ACCESS Rack B first, followed by C and D.

ACCESS RACK RECEIVES THE CALL

In model number 2 where the serving ACCESS Rack accepts all incoming connections, all the profiles are built on the Remote Receivers. ACCESS Rack B will use a simple profile by defining the encoders in each direction, and assign that profile to ACCESS Rack A. ACCESS Rack C and D will each define a profile with their Local Encoders turned Off, and assign them to A. ACCESS Rack B should connect first. When C and D connect, they will hear the same stream as B, regardless of how their Remote Encoders are set in their profiles.

In a Multicast environment, the first man wins. For example, the first connection made between units will determine the encoders used for all others. After the first full-duplex connection is made, all other attempts at full-duplex connections to either end will be rejected.

USING CROSSLOCK WITH MULTICAST CONNECTIONS

CrossLock functionality in Multistreaming has been introduced with ACCESS Rack. Previous Comrex Access Racks did not support CrossLock VPN when performing a Multicast. With the introduction of ACCESS Rack, the added broadcast reliability of CrossLock brings increased connection stability in Multistreaming environments.
xv. IP MULTICAST

IP Multicast is an efficient way of delivering ACCESS Rack digital audio streams to multiple locations. This involves relying on the network to distribute the stream to the locations that require it, rather than creating an independent stream for each user.

Performing an IP Multicast requires the use of an IP Multicast-capable network. The commercial Internet, with few exceptions, is *not* capable of supporting IP Multicast. Some private LANs and WANs *are* IP Multicast capable.

IP Multicast does not support duplex connections, and only supports a single direction stream. An encoder can not receive input streams when multicasting. CrossLock is not supported and should be turned off for all IP Multicast connections.

The following section presupposes that IP Multicast users will be familiar with the basic concepts of setup and operation of the network, and will thus focus on how to configure ACCESS Rack for Multicast mode.

MULTICAST PROFILES

To configure remotes for Multicast, first create a profile for either a Multicast Sender or a Multicast Receiver on the **Profile Manager** tab.

As shown in Figure 64, when defining a new profile there is the option to choose **Multicast** as the profile type. Multicast profiles have fewer options than other profile types, however, and some of the available options will have no effect (e.g. setting an encoder type on a Multicast receiver has no effect).

![MULTICAST SETTINGS](image)
The important settings for Multicast are:

- **Sender/Receiver** - Determines whether this particular ACCESS Rack is designed to generate and encode the IP Multicast stream (send) or decode one (receive).
- **Encoder Type** - Determines the algorithm format of stream to be used by the Multicast encoder—not relevant for decoders.

In addition to the basic options for IP Multicast profiles, clicking the **Advanced** box will allow setting of the same **Advanced Options** available for Normal BRIC (Unicast) profiles.

SETTING UP A MULTICAST REMOTE

All Multicast connections are outgoing connections. A Multicast Sender must initiate an outgoing stream, and a Multicast Receiver must initiate an incoming one. These remotes are configured within a special address range known as a Multicast Block, typically 224.0.0.0 to 239.255.255.255. To establish a Multicast connection, simply define a remote as having an address within the IP Multicast Block, use an IP Multicast profile, and press **Connect**.

TIME-TO-LIVE

Time-to-Live (TTL) is a variable set by Multicast encoders to determine how long a packet is processed before it is dropped by the network. The default value of TTL in ACCESS Rack is 0, which limits its use to within a LAN environment. TTL may be manually changed on a Multicast Sender remote by configuring the IP address followed by a “/”, followed by the TTL value. An example remote Multicast encoder could be set for the address 224.0.2.4/255, which would signify an address with the Multicast Block with a TTL of 255 (which is the max value available).

CHANGING PORT NUMBERS FOR MULTICAST

The default port of UDP 9000 may also be changed on Multicast remotes. The port number is assigned in the standard socket format, directly after the IP address, preceded by “:”, followed by the TTL. As an example, the IP address of a Multicast Sender on port 443 with a TTL of 100 would read: 224.0.2.4:443/100.
XVI. STREAMING SERVER FUNCTION

ACCESS Rack has the ability to act as a streaming server, delivering AAC and HE-AAC to compatible PC-based media players. Currently tested media players include WinAmp, VLC, and Windows Media Player 12 and up.

By default, streaming server functionality is turned off. To enable it, go to the System Settings tab of the User Interface and choose HTTP Settings option. Under the first option, set Accept Incoming Connections to Enabled (Figure 65). This allows outside users to initiate a “pull” connection to the codec.

![Accept Incoming Connections](image)

FIGURE 65 ACCEPT INCOMING HTTP CONNECTIONS

The default port for serving streams is UDP 8000. Creating a custom port can be done in the HTTP settings under IP Port. Note that this port will need to be referenced in the URL provided to listeners.

![HTTP Streaming Encoder](image)

FIGURE 66 HTTP STREAMING ENCODER

Next, select an encoder for use by the streaming server (Figure 66). Only the encoder choices that are compatible with the players listed are shown in this menu. Choices span from a mono audio feed at 18 kb/s up to a stereo feed at 128 kb/s. Keep in mind, multiple streams will require this bandwidth, along with around 25% overhead for each stream.
The Genre, Info URL, and Public options may be set for anything, or left alone. These options, if applied, will be embedded into the stream.

DECODING A STREAM

To decode a stream, open one of the supported players and select the option to open a URL-based stream.

In **Winamp** and **VLC**, input the address of the ACCESS Rack in the following format:

http://192.168.0.75:8000
(using the actual IP address, and the actual port if not changed from default 8000)

In **Windows Media Player**, input the address like this:

http://192.168.1.75:8000/stream.asx
(using the actual IP address, of course)

SIMULTANEOUSLY CONNECTING ACCESS RACKS AND STREAMING

ACCESS Rack can stream while connected to another Comrex codec in BRIC Normal mode. If the BRIC connection is using an AAC algorithm supported by players, when a stream is requested it will be delivered using the same encoder as the BRIC connection, regardless of the HTTP settings. If the ACCESS Rack encoder is Linear or FLAC, the stream request will be rejected.
Comrex codecs (and many other brands) have a set of protocols that allow easy IP connections between units. In general, when connecting between Comrex hardware, it’s best to use these proprietary modes to take the most advantage of the features of the product.

However, many users are concerned about getting “locked in” to a certain codec brand. Because of this, an international committee was formed by the European Broadcast Union called N/ACIP to hammer out a common protocol to interconnect codec brands. This committee resulted in the establishment of EBU3326, a technical document describing how best to achieve this goal.

EBU3326 by and large establishes a set of features each codec should support, and then leaves most of the heavy lifting to other, previously established standards like SIP (IETF RFC 3261). Topics not covered (yet) by EBU3326 include things like carrying ancillary data, contact closures from end-to-end, codec remote control, monitoring, and complex NAT traversal—which at this point are still left to the individual manufacturer’s discretion. If these topics are important to a user’s application, it’s best to stick to a single codec vendor and their proprietary protocols.

MORE ABOUT EBU3326

The Tech 3326 document defines several mandatory encoding algorithms and the transport layer that could be used on them for compatibility. But the most complex part of the standard was the decision on how to arrange Session Initialization, which is the handshake that takes place at the start of an IP codec call. The most commonly used protocol is called **SIP**, which is used extensively by VoIP phones and therefore was a logical choice. SIP carries the advantage of making ACCESS Rack compatible with a range of other non-broadcast products, like VoIP hardware, software, and even mobile phone apps.

EBU3326 IN ACCESS RACK

ACCESS Rack does not fully comply with EBU3326, as it does not feature the mandatory MPEG Layer II codec. Aside from this, ACCESS Rack has been tested to be compatible with several other manufacturers’ devices using encoders supported by both products. When using **EBU3326/SIP Compatible** mode (how the user interface describes EBU3326), ancillary data, contact closures, Switchboard TS, Multistreaming and Multicasting are not supported. Outgoing call profiles built with the EBU3326/SIP channel may lack some advanced options, and cannot be set for different encoders in each direction (i.e., EBU3326/SIP calls are always symmetrical).
EBU3326/SIP MODES

A function of placing a SIP-style call is the ability to register with a SIP server. This is a server that exists somewhere on the network, usually maintained by a service provider. Several free servers exist that can offer registration, like Onsip.com.

The ACCESS Rack allows EBU3326/SIP calls to be placed or received with or without registration on a SIP server. If registration is not enabled, connections are made directly to the compatible device by dialing its IP address, just like in BRIC Normal mode.

UNREGISTERED MODE

Placing a call in Unregistered EBU3326/SIP mode is simple: just build a profile, but instead of choosing BRIC Normal channel, choose EBU3326/SIP. This will make sure the call is initiated on the proper ports and with the proper signaling. The majority of system settings relating to EBU3326/SIP relate to Registered mode.

REGISTERED MODE

Registering with a SIP server in EBU3326/SIP mode can have some advantages. When using a SIP server:

- The server can be used to help make connections between codecs through routers.
- The remote codec can be dialed by its SIP URI instead of IP address.
- The SIP server can be used to find codecs on dynamic IP addresses.

SIP SERVERS

A SIP server exists in a domain. This domain is represented by a web-style URL like sipphone.com or iptel.org. A SIP server or proxy generally handles IP connections within its domain.

SIP URIS

The SIP server assigns a fixed alphanumeric name to each subscribed account. For example, an Iptel user may be assigned the username comrex_user. URIs consist of a SIP username, followed by a domain, delineated with the @ symbol, like an email address. Comrex’s Iptel user URI would be comrex_user@iptel.org. Comrex devices do not use the designation “sip:” before a SIP address.

If a connection is made exclusively within a domain, the domain name can be left off. As an example, to make a call to this codec from another Iptel registered codec, the dialing string can simply be comrex_user (with the domain being assumed).

REGISTERING WITH A SERVER

At a minimum, you will need the following information when registering ACCESS Rack with a SIP server:

- The Internet address of your SIP proxy/server (e.g. proxy01.sipphone.com);
- The username on the SIP account (this is usually the dialing address);
• The password on the SIP account.

Figure 67 shows how this information can be applied by enabling the **Use SIP Proxy** option under **EBU 3326/SIP** on the **Systems Settings** tab.

![EBU3326/SIP Settings](image)

FIGURE 67 EBU3326/SIP SETTINGS

Once this information is correctly entered, a new field appears in the “Registration Status” box located on the **Connections** tab (Figure 68).

![SIP Status](image)

FIGURE 68 SIP STATUS

The status will reflect the progress of the registration process. When complete, this will display **Online**. If the box does not display **Online** after a short time, it means that registration likely failed. It’s best to go back and carefully check the registration info. It might also be useful to ensure the registration information is valid by configuring a VoIP phone or softphone with it and attempting registration.
SIP registration can be very simple with some servers, and others can require more advanced settings, which are described in the Advanced Topics section on the following page.

MAKING REGISTERED SIP CALLS

When registered, calls made using an EBU3326/SIP profile behave differently than normal. The address field, regardless of whether it is a SIP URI or an IP address, is forwarded to the server. No connection attempt is made until the server responds.

If the server accepts the address, the call will be attempted. If not, an error message will appear in the status line. Reasons for call rejection by a server are numerous. Some examples are:

- The server does not support direct connection to IP addresses (if the address is in this format).
- The server does not recognize the address.
- The server does not forward calls beyond its own domain.
- The server does not support the chosen codec.
- The called device does not support the chosen codec.
- The address is a POTS telephone number, and POTS interworking is not supported.
- The address is a POTS telephone number, and no credit is available (most services charge for this).

ADVANCED EBU3326/SIP TOPICS

The basic entries provided will allow support for the vast majority of EBU3326/SIP-based applications. There are inevitably situations where the defaults won’t work, however. Comrex has provided some advanced options that can help. These options are located in the Systems Settings and can be made visible by selecting the Advanced box:

- **IP Port** - Universally, SIP connections are supposed to use UDP port 5060 to negotiate calls between devices (and between servers and devices). Note that this is only the negotiation channel; actual audio data is passed on the RTP ports. Changing this port number will change which incoming ports are used to initiate connections and to which ports connection requests are sent. Obviously, the change must be made on both devices, and this change will essentially make your codec incompatible with industry-standard VoIP devices.
- **RTP Port** - This is one of two port numbers used for audio data transfer (the port number directly above this is used as well). Because this port number is negotiated at the beginning of a call (over the IP port), this port may be changed without breaking compatibility. Note that many SIP standard devices use port 5004 for this function. Due to the negotiation, it is not important that these numbers match on each end. Changing this port to 5004 can actually have an adverse effect, as 5004 is the default port for other services on Comrex codecs.
- **Public IP Override** - See the SIP Troubleshooting for more information on this option.
- **Use STUN Server** - See SIP Troubleshooting for more information on this option.
- **SIP Proxy Keepalive** - Only applies to Registered mode. This variable determines how often the codec "phones home" if registered with a SIP server. It’s important for the codec to periodically "ping" the server, so the server can find the codec for incoming calls. It can be adjusted primarily to compensate for firewall
routers that have shorter or longer binding timings, i.e., the router may have a tendency to “forget” that the codec is ready to accept incoming calls and block them.

- **SIP Domain** - This only applies to Registered mode. It’s the name of the network controlled by the SIP server. This parameter must be passed by the codec to the server. Under most circumstances, this is the same as the server/proxy address, and if this field is not populated, that is the default. If, for some reason, the domain is different than the server/proxy address, then this field is used.

SIP TROUBLESHOOTING

In a nutshell, SIP establishes a communication channel from the calling device to the called device (or server) on port 5060. All handshaking takes place over this channel, and a separate pair of channels is opened between the devices: one to handle the audio, and the other to handle call control. The original communication channel is terminated once the handshaking is complete. Note that firewalls must have all three ports open for calls to be established correctly.

The primary area where SIP complicates matters is how an audio channel is established once the handshake channel is defined. In the common-sense world, the call would be initiated to the destination IP address, then the called codec would extract the source IP address from the incoming data and return a channel to that address. This is the default method Comrex devices use to create and maintain a connection.

But SIP includes a separate “forward address” or “return address” field, and requires that a codec negotiating a call send to that address only. This is important in the case of having an intermediate server, and works fine as long as each codec knows its public IP address.

OUTGOING CALL ISSUES

A unit making an outgoing call must populate the “return address” field. But any codec sitting behind a router has a private IP address, and does not know its public address. A codec will populate its private IP address (e.g. `192.168.x.x` style address) into that “return address” field. The called codec will attempt to connect to that address and fail, as its private IP Address can’t be reached from public Internet.

INCOMING CALL ISSUES

Incoming calls to codecs behind routers are complicated by the need to forward ports on the router to the codec. In the case of SIP, this must be three discrete ports. (For Comrex codecs these are UDP 5060, 5014 and 5015) <6014 and 6015 with 3.0 firmware> As the “forward address” is negotiated in SIP, the incoming unit is likely to populate the “forward address” field with its private address as well.

SOLUTIONS

Many times the “return address” field issue is fixed by the SIP server (in Registered mode) and no compensation measures are necessary. Often, the server insists on acting as a “proxy” and handles all the traffic itself. Outgoing and incoming streams are relayed directly by the server, solving any router issues.
In point-to-point connections this isn’t possible, and some hacks are required to make this work. The first place to look is the router, as many modern routers are aware of this issue and may be configured to ease connectivity. If a router supports the **SIP Application Layer Gateway (ALG)**, enabling this option can fix the issue. The router will read the SIP handshake, find the outgoing address field, and replace it with the public IP. This is a valuable solution in environments where the router supports ALG. In environments where ALG is not available, **STUN** is a valuable alternative.

STUNNING SUCCESS

Another technique for working around the SIP-Router issue is by using a protocol called **STUN**. This can be enabled in Comrex codecs in the **Advanced EBU3326/SIP** options and allows for the codec to learn its public IP address. It does this by contacting a STUN server on the Internet (the default one is maintained by Comrex) and requesting its Public IP. If this option is enabled, the codec itself will handle the address switching.

Be aware of the “battling workarounds” issue, as ports are being translated by the router as well as IP addresses. If the ALG-enabled router receives an unexpected result in the SIP address field (as it might if using STUN), it may not translate ports as expected, and it’s likely that the call will fail. When in doubt, the best technique is to try a SIP call with STUN turned off, and if the return channel fails, try enabling STUN.

FIX OF LAST RESORT

Finally, there’s a brute-force option available on Comrex Codecs when STUN ports are blocked by a firewall, or are unusable for some reason. Under **Advanced System Settings**, a field is available called **Public IP Override**. Any address put into that field will be pasted into the address SIP field. A user can thus place their Public IP address (obtainable from many websites via a browser) in this location. Keep in mind, the Public IP address is often subject to change over time, so it’s important to remember this change has been made on a codec.
LICENSING

MPEG-4 audio coding technology licensed by Fraunhofer IIS
http://www.iis.fraunhofer.de/amm/

ACCESS uses proprietary and open-source software programs. Some of the open-source programs are licensed under the Gnu Public License (GPL). For more information on GPL, see http://www.gnu.org.

As per the GPL, source code for this software is available on request from Comrex on CD-ROM or other electronic format. To obtain this software please contact our support department at +1 978 784 1776. We retain the right to charge a small handling fee for distribution of this software.

ACCESS makes use of open-source and/or free software with the following copyright restrictions:

ncurses
See further Copyright notice below

dropbear
Copyright © 2002-2004 Matt Johnston
Portions copyright (c) 2004 Miheea Stoenescu
All rights reserved.
See further Copyright notice below

libxml2
Copyright © 1998-2003 Daniel Veillard. All Rights Reserved.
See Further Copyright notice below

Import code in keyimport.c is modified from PuTTY’s import.c, licensed as follows:

PuTTY is copyright 1997-2003 Simon Tatham

Portions copyright Robert de Bath, Joris van Rantwick, Delian Delchev, Andreas Schultz, Jeroen Massar, Wez Furlong, Nicolas Barry, Justin Bradford, and CORE SDI S.A.
Further copyright notice for ncurses, dropbear PuTTY and libxml2

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

Libpcap
tcpdump
The Regents of the University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
3. The names of the authors may not be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

WARRANTY

All Equipment manufactured by Comrex Corporation is warranted by Comrex against defects in material and workmanship for one year from the date of original purchase, as verified by the return of the warranty registration card. During the warranty period, we will repair or, at our option, replace at no charge a product that proves to be defective, provided you obtain a return authorization from Comrex and return the product, shipping prepaid to Comrex Corporation, 19 Pine Road, Devens MA 01434 USA. For return authorization, contact Comrex at 800-237-1776 or 978-784-1776 or email techies@comrex.com.

This warranty does not apply if the product has been damaged by accident or misuse or as a result of service or modification performed by anyone other than Comrex Corporation.
The next two paragraphs apply to all software contained in this product:

WITH THE EXCEPTION OF THE WARRANTIES SET FORTH ABOVE, THE PRODUCT (MEANS COLLECTIVELY THE HARDWARE AND SOFTWARE COMPONENTS) IS PROVIDED STRICTLY “AS-IS.” COMREX CORPORATION AND ITS SUPPLIERS MAKE NO WARRANTY, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR WARRANTY AGAINST LATENT DEFECTS. COMREX CORPORATION AND ITS SUPPLIERS DO NOT WARRANT THAT THE PRODUCT IS ERROR-FREE, THAT ALL ERRORS MAY BE DETECTED OR CORRECTED, OR THAT THE USE OF THE PRODUCT WILL BE UNINTERRUPTED. IN NO EVENT WILL COMREX CORPORATION AND ITS SUPPLIERS BE LIABLE FOR INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGE RESULTING FROM THE USE OF THE PRODUCT INCLUDING LOSS OF PROFITS, LOSS OF SAVINGS, LOSS OF USE OR INTERRUPTION OF BUSINESS EVEN IF COMREX CORPORATION OR ANY OF ITS SUPPLIERS HAS BEEN ADVISED OF THE POSSIBILITY OF SAME. IN NO EVENT SHALL COMREX CORPORATION AND/OR ITS SUPPLIERS’ TOTAL LIABILITY TO YOU REGARDLESS OF THE FORM OF ACTION EXCEED THE AMOUNT YOU PAID AS PART OF THE PURCHASE PRICE OF THIS PRODUCT. COMREX CORPORATION AND ITS SUPPLIERS MAKE NO WARRANTY, EITHER EXPRESSED OR IMPLIED, THAT ANY USE OF THE PRODUCT WILL BE FREE FROM INFRINGEMENT OF PATENTS, COPYRIGHTS, OR ANY OTHER THIRD PARTY’S INTELLECTUAL PROPERTY RIGHTS.

THE SOFTWARE OWNED BY COMREX CORPORATION OR BY ITS SUPPLIERS RESIDING IN OR OTHERWISE ASSOCIATED WITH THIS PRODUCT ARE PROTECTED UNDER COPYRIGHT LAW AND INTERNATIONAL TREATIES. UNAUTHORIZED REVERSE ENGINEERING, REPRODUCTION AND/OR DISTRIBUTION OF THE PRODUCT OR ANY PORTION THEREOF, IS STRICTLY PROHIBITED AND MAY RESULT IN CIVIL AND CRIMINAL SANCTIONS, AND WILL BE PROSECUTED TO THE FULL EXTENT OF THE LAW. COMREX CORPORATION AND ITS SUPPLIERS OWNS AND SHALL RETAIN ALL RIGHT, TITLE AND INTEREST IN AND TO ANY SOFTWARE SUPPLIED TO YOU IN AND AS PART OF THE PRODUCT AND ALL INTELLECTUAL PROPERTY RIGHTS RELATED THERETO. THE SALE OF THE PRODUCT SHALL NOT BE CONSTRUED IN ANY MANNER AS TRANSFERRING ANY RIGHT OF OWNERSHIP IN ANY SUCH SOFTWARE.
You have purchased a product from Comrex that uses the Switchboard TS (Traversal Server) to provide the ability to locate Comrex hardware via the Internet and to aid in the making of connections when certain types of NAT routers are involved in the link. Switchboard TS consists of two distinct elements: the firmware that functions within the codec hardware to enable use of the function, and a server deployed on the Internet which provides the services to the codec hardware.

The purchase you have made entitles you only to the firmware elements within your codec that utilize these functions. The functions of Switchboard TS, as implemented in your codec, are warranted to work as described (according to standard Comrex warranty terms found in your User Manual) when used with a properly functioning Traversal Server deployed on the Internet.

Comrex has deployed and provided you account details for a Switchboard TS account on our server, located at http://switchboard.comrex.com.

Comrex provides this service, free of charge and at will. As such, Comrex offers no warranty as to availability of this server or of its function. Comrex reserves the right to discontinue availability of this service at any time. Comrex also reserves the right to remove any account from the server at http://switchboard.comrex.com at any time for any reason. In no way shall Comrex be liable for this server’s malfunction, lack of availability or any resultant loss therein.

The software that runs the Comrex Traversal Server on the Internet is available from Comrex in an executable format, free of charge, with basic instructions on how to set it up. The address of the server used for these functions is configurable in the codec firmware. If you wish to deploy your own Traversal Server, contact Comrex for details on obtaining this software.

Comrex is not liable for training or support in setting up a TS server, and the software is available without warrantee or guarantee of suitability of any kind.
SUPPLIERS’ DECLARATION OF CONFORMITY

Place of Issue: Devens, Massachusetts

Date of Issue: January 23, 2006

Equipment: Comrex ACCESS Rack

Thomas O. Hartnett, Vice President, Comrex Corporation

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.
EC DECLARATION OF CONFORMITY FOR R&TTE DIRECTIVE

We:

Manufacturer’s Name: Comrex Corporation

Manufacturer’s Address: 19 Pine Road
Devens, MA 01434

hereby declare on our sole responsibility that the product:

Comrex ACCESS Rack
Digital Audio Codec

to which this declaration relates is in conformity with the essential requirements and other relevant requirements of the R&TTE Directive (1999/5/EC). This product is compliant with the following standards and other normative documents:

European EMC Directive (89/336/EEC)
 EN 60950-1: 2001

Contact person: Thomas O. Hartnett, V.P., Engineering

Signed: __________________________

Date: 23 January 2006
U.S. AND CANADIAN REGULATORY INFORMATION FOR THE ACCESS RACK

This equipment complies with Part 68 of the FCC rules and the requirements adopted by the ACTA, as well as the applicable Industry Canada technical specifications. On the bottom of this equipment is a label that contains, among other information, a product identifier in the format US:DXDMD01BACCRK. If requested, this number must be provided to a U.S. telephone company.

Telephone line connections to the Comrex ACCESS Rack are made via an RJ11C jack. A plug and jack used to connect this equipment to the premises wiring and telephone network must comply with the applicable FCC Part 68 rules and requirements adopted by the ACTA. A compliant telephone cord and modular plug is provided with this product. It is designed to be connected to a compatible modular jack that is also compliant. See installation instructions for details.

The REN is used to determine the number of devices that may be connected to a telephone line. Excessive RENs on a telephone line may result in the devices not ringing in response to an incoming call. The sum of RENs should not exceed five (5.0). To be certain of the number of devices that may be connected to a line, as determined by the total RENs, contact the local telephone company. The REN for the Comrex ACCESS Rack is 0.1, and is shown as the digits represented by ## in the product identifier US:DXDMD###ACCRK.

If the Comrex ACCESS Rack causes harm to the telephone network, the telephone company will notify you in advance that temporary discontinuance of service may be required. But if advance notice isn’t practical, the telephone company will notify the customer as soon as possible. Also, you will be advised of your right to file a complaint with the FCC if you believe it is necessary.

The telephone company may make changes in its facilities, equipment, operations, or procedures that could affect the operation of this equipment. If this happens the telephone company will provide advance notice in order for you to make necessary modifications to maintain uninterrupted service.

If trouble is experienced with the Comrex ACCESS Rack, please contact Comrex Corporation at 978-784-1776 for repair or warranty information. If the equipment is causing harm to the telephone network, the telephone company may request that you disconnect the equipment until the problem is solved.

No user serviceable parts are contained in this product. If damage or malfunction occurs, contact Comrex Corporation for instructions on its repair or return.

Connection to party line service is subject to state tariffs. Contact the state public utility commission, public service commission or corporation commission for information. This equipment cannot be used on telephone company provided coin service.

If you have specially wired alarm equipment connected to the telephone line, ensure the installation of the Comrex ACCESS Rack ACCESS Rack does not disable your alarm equipment. If you have questions about what will disable alarm equipment, consult your telephone company or a qualified installer.
APPENDIX A - HOTSWAP

ACCESS Rack connections are able to utilize Hotswap, allowing users running CrossLock in “Dual Network” mode to designate a primary and secondary network. This secondary network (e.g. wireless 4G) serves as a backup to the primary in case of network failure. Hotswap is a System Setting in ACCESS Rack.

A typical usage scenario would be a codec that is active 24/7 providing a STL connection, as shown in Figure 69. As it is often impractical (and expensive) to run audio over a 4G cellular network 24/7, Hotswap ensures that the CrossLock connection prioritizes a different network (e.g. an ethernet connection). In this example, in the event of a network failure, Hotswap would divert from the primary connection to the secondary 4G cellular network as a backup. When the primary network is restored, Hotswap will switch back to it and continue to hold the secondary network in a backup state. Any supported network type (e.g. Ethernet, Wi-Fi, 4G cellular) can be designated as the primary or secondary backup network.

Since Hotswap is an alternate mode of the Comrex CrossLock reliability layer, connections between codecs must be established via CrossLock in order to use it.

Please note: Codecs on both ends of the link must be running at least 4.3-level firmware in order to operate HotSwap.

DATA USAGE

It is imperative to note that even a network in a backup state still utilizes a small amount of data. This is important when considering using cellular networks. For 24/7 operation, this data will total less than 0.5 GB for a typical month of usage, assuming no Hotswap activity occurs. If the Hotswap function engages to a cellular network, much more data will be used while the primary network is down. Regardless of how Hotswap is used or set up, Comrex assumes no liability for data overage charges, even in the event of software bugs or any other failure of hardware or software. It is entirely the responsibility of the user to monitor any metered data usage.
SETUP

Setup for HotSwap is done entirely on the end of the link that has dual networks connected. On the ACCESS Rack, the best way to set up HotSwap is via the Network Manager page, accessible via the web-based interface. Navigate to the three-line Main Menu icon in the upper left hand corner of the screen and select Network Manager.

Before entering the Network Manager, the secondary network should be attached to the ACCESS Rack via USB. The default behavior for CrossLock is to use all networks available to aggregate and apportion data based on capacity and delay calculations. To configure primary and secondary networks, this behavior will require changes in the Network Manager.

In Network Manager, a list of all networks attached to the codec and their status will populate under “Select Network Device”, as shown in Figure 70.

FIGURE 70 NETWORK SETUP

Here the backup network can be selected. This network’s options can be expanded using the “Show Advanced” button, which will reveal additional configuration options. Find the option labelled “Use with CrossLock” and change the default from “yes” to “backup” (Figure 71).

FIGURE 71 HOTSWAP NETWORK DEVICE SETUP

Select “Save Settings”, then click “Close” or press ESC to exit Network Manager.
Exit the Main Menu and navigate to the System Settings page. Under CrossLock VPN, locate the entry labeled “Redundant Transmission” (Figure 72). Change this from the default “Off” to “On”, and then click “Apply Changes”.

Finally, set one of the contact closures to sound an alert when the HotSwap function is engaged. Still in the CrossLock VPN settings, select “HotSwap CC unit”. Choose whether the contact closure output triggers on the local, remote, or both codecs (Figure 73). Select “Apply Changes” to save your new settings.

Next choose “HotSwap CC Indicator” and select which contact closure to trigger (Figure 74). This will override any previous setting changes made in the main configuration web page regarding contact closures.

Choose “Apply Changes” to save changes.
FIGURE 74 HOTSWAP CC INDICATOR
APPENDIX B - IP COMPATIBILITY

The ACCESS Rack is capable of encoding and decoding a choice of three different types of non-ACCESS Rack streams: **Standard RTP**, **Luci Live**, and **Zephyr Xstream**. The choice is exclusive—i.e., you must set the ACCESS Rack specifically for the type of stream you wish to be compatible with and you will remain incompatible with the other two types unless you change it. This setting has no effect on normal ACCESS Rack functions, which continue to operate as before.

1. **Luci Live** - This PDA/PC-based software allows real-time streaming over IP links. As of version 1.2, **Luci Live** includes AAC and HE-AAC, in addition to the default MP2 algorithm. ACCESS Rack can communicate with **Luci Live** only in Luci’s AAC modes. Note: The free demo available from Luci does not incorporate the AAC functions; you must have a licensed and registered copy to use AAC.

 To communicate with a **Luci Live** device:
 - **Initial Setup** - This will define all Standard RTP connections to be Luci Compatible.
 - **ACCESS Rack** - On the **System Settings** tab, open the **Standard RTP Settings** option and choose **RTP Compatibility Mode**. On the pull-down box, choose **Luci Live**.
 - **Incoming Connections** - **Luci Live** sends either an AAC or HE-AAC stream to the ACCESS Rack on UDP port 5004. These streams will be automatically decoded. By default, a return channel of AAC 56 kb/s mono is returned to the **Luci Live** product. The return channel may be altered to any Luci-compatible mode in the **Systems Setting** section.
 - **Outgoing Connections** - Build a profile using the **Profile Manager** on the ACCESS Rack and select a **Channel Mode** of **Standard RTP**. Then choose a Luci-compatible encoder for the outgoing call. The Luci software will control what type of stream, if any, is returned to the ACCESS Rack.

2. **Zephyr Xstream** - Xstream Firmware version 3.2.0 and higher support an “RTP Push” function that is compatible with ACCESS Rack in some modes. ACCESS Rack is not currently compatible with the Xstream’s HTTP and SIP streaming functions.

 There are several limitations imposed by the Xstream when using the RTP Push function:
 - On the Xstream, only AAC and MP3 coding are available in this mode, and ACCESS Rack is only compatible with the AAC mode.
 - The Xstream uses downsampling in modes below 96 kb/s, which is not supported by ACCESS Rack.
 - In order for an Xstream to decode an ACCESS Rack stream, the default decoder setting must be changed from <Auto> to <AAC> in the codec menu of the Xstream.

 To communicate with a **Zephyr Xstream**:
 - **Initial Setup** - This will define all Standard RTP connections to be Xstream Compatible.
 - **ACCESS Rack** - On the **System Settings** tab, open the **Standard RTP Settings** option and choose **RTP Compatibility Mode**. On the pull-down box, select **Zephyr Xstream**.
 - **Incoming Connections** - **Zephyr Xstream** sends an AAC stream to the ACCESS Rack on UDP port 9150. These streams will be automatically decoded. By default, a return channel of AAC 96 kb/s mono is returned to the Xstream. The return channel may be altered to any Xstream-compatible mode in the **Systems Setting** section.
• **Outgoing Connections** - Build a profile using the **Profile Manager** on the ACCESS Rack and select a **Channel Mode** of **Standard RTP**. Then choose an Xstream-compatible encoder for the outgoing call. The Xstream will control what type of stream, if any, is returned to the ACCESS Rack.

3. **Standard RTP** - This mode is set to receive a basic, unformatted AAC stream within a standard RTP/UDP structure. At present, this mode does not offer compatibility with other industry devices.
APPENDIX C - ACCESS RACK ON UNIDIRECTIONAL NETWORKS

Under most circumstances, ACCESS Rack requires an IP path in both directions for successful connections, even when audio is being sent only one-way. For networks that provide data only in one direction, it is possible to use Standard RTP mode to establish and maintain these links. This section describes how to set that up.

The codec has several compatibility modes under the Standard RTP channel mode. The units default to a mode that is compatible with the Luci Live PC-based encoder. This must be changed on both codecs.

- On the ACCESS Rack, click the System Settings tab and select Show Advanced Options.
- Find Standard RTP Settings and choose to edit the RTP Compatibility Mode.
- Change this setting to Standard and click Apply.

STANDARD RTP SETTINGS

The following setting instructions apply to both codecs in the link (encoder and decoder):

DECODE-SIDE SETTINGS ONLY

Under Advanced Standard RTP Settings, find the Return Channel Enable entry. Disable the return channel and click Apply (or Save on ACCESS Portable). This will make sure that no channel will be set up in the direction to the encoder.

ENCODE-SIDE SETTINGS ONLY

Connections of this type must be established from the encoding side of the link. A new Profile must be built that uses the Standard RTP channel mode under the Profile Editor. Choose an outgoing encoder, along with any other special attributes, in the profile editor. Name the Profile something descriptive like “Simplex”.

Next, create an outgoing remote entry in the address book. Apply the new profile to that entry. Any connection made with that entry will connect in a unidirectional fashion.

FULL-TIME OR TRIGGERED CONNECTIONS

A remote entry using a unidirectional profile can still utilize the tools required for automatic connection.

To set up a connection to be “always active” (i.e., reconnect in the case of power outage or network failure), choose that connection on the System Settings tab as the Always Connect To location.

To trigger the connection when an external contact is closed, choose the connection under one of the Contact Closure settings on the System Settings tab.
APPENDIX D - INFORMATION FOR IT MANAGERS

The purpose of this appendix is to describe all open ports and services available on the Comrex ACCESS Rack.

The Comrex ACCESS Rack is a device designed to move real-time, wideband audio over IP networks. The main network interface is 1000BaseT-Ethernet. The device contains an optimized version of Linux kernel. The IP parameters are set by a computer on the local LAN using a proprietary broadcast UDP protocol.

Comrex provides Device Manager, a Windows- or MAC-compatible application, on the included CD or available on our website at www.comrex.com, to perform this function on the local computer. Once the unit is powered on your ACCESS Rack, you have five minutes before this function is disabled.

IP parameters can also be changed online using the Network Manager in the Web GUI Main Menu. Updates to the system are provided by a custom online updater utility. This update process is password-protected and requires access to TCP 80 and TCP 8081. In addition to the password protection, the update data itself must have a valid cryptographic signature from Comrex, or else it is rejected.

INCOMING SERVICES

<table>
<thead>
<tr>
<th>Port</th>
<th>Service</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP 22</td>
<td>SSH*</td>
<td>Off (On for products shipped before 1 July 2017)</td>
</tr>
<tr>
<td>TCP 80-85</td>
<td>HTTP control</td>
<td>On</td>
</tr>
<tr>
<td>TCP 8081</td>
<td>Firmware upload</td>
<td>Open only during upgrade process</td>
</tr>
<tr>
<td>UDP 9000</td>
<td>BRIC Normal Media</td>
<td>On</td>
</tr>
<tr>
<td>UDP 9001</td>
<td>CrossLock Media</td>
<td>On</td>
</tr>
<tr>
<td>UDP 5060</td>
<td>SIP</td>
<td>Off</td>
</tr>
<tr>
<td>UDP 5004, 5005</td>
<td>Standard RTP</td>
<td>Off (On for products shipped before 1 July 2017)</td>
</tr>
<tr>
<td>UDP 6014, 6015</td>
<td>SIP RTP</td>
<td>Off</td>
</tr>
<tr>
<td>TCP 9000</td>
<td>BRIC Normal/TCP</td>
<td>Off</td>
</tr>
<tr>
<td>TCP 8000</td>
<td>HTTP Media</td>
<td>Off</td>
</tr>
</tbody>
</table>

*Only SSH clients with an authorized DSA key can access SSH services on the device. Other forms of authentication are disabled. This key is kept confidentially by Comrex for factory diagnostics only. SSH services may be disabled completely via the user interface.

OUTGOING SERVICES

<table>
<thead>
<tr>
<th>Service</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTP</td>
<td>0.comrex.pool.ntp.org:123 (UDP)</td>
</tr>
<tr>
<td>Switchboard</td>
<td>switchboard.comrex.com:8090, switchboard.comrex.com:8081 (secondary) (TCP)</td>
</tr>
<tr>
<td>STUN</td>
<td>stun.comrex.com:3478 (UDP)</td>
</tr>
<tr>
<td>DNS Lookup</td>
<td>DNS Server:53 (TCP and UDP)</td>
</tr>
</tbody>
</table>
APPENDIX E - CONNECTIONS TO MULTIRACK

The purpose of this appendix is to describe how to make connections to Comrex ACCESS MultiRack.

BRIC NORMAL CONNECTIONS

The Comrex ACCESS MultiRack allows users to make up to 5 separate AES67 connections. This feature allows additional setup including the assignment of separate UDP ports for each MultiRack Instance. UDP 9000 is the default port for BRIC Normal connections. Instance #1 on MultiRack will use the UDP 9000 port by default. Comrex generally recommends End Users with MultiRack then use UDP 9002-9005 for instances #2-5 respectively, leaving UDP 9001 open for Crosslock.

When making Remote Entries for MultiRack, each instance needs to be its own separate entry. For BRIC Normal connections, this is done by entering the Public IP Address the MultiRack is behind followed by “:9000” for instance #1, and “:9002”, “:9003”, “:9004, and “:9005” for instances #2-5 respectively. For example, Creating a BRIC Normal entry for instance #3 on a MultiRack would read: “<IP ADDRESS>:9003”.

MANUAL CROSSLOCK CONNECTIONS

Manual CrossLock connections require special configuration options on both sides of the link. This primarily involves programming the Switchboard ID for each unit (or primary Ethernet MAC address) into the outgoing settings on the codec on the opposite side of the link. This process for outgoing calls is described above. What isn’t mentioned is also important: the MAC/Switchboard ID of the outgoing unit must also be programmed into the unit receiving the call.

Note that MultiRack instances #2-5 have special Switchboard IDs consisting of the primary Ethernet MAC followed by a suffix (e.g. 00:01:0c:c0:78:19-4 for instance #4).

This is done by creating an outgoing connection describing the far-end unit, even if it is never actually used for outgoing calls. In the case of this “dummy” entry, it’s not actually important for the IP address field of the far-end unit to be correct. The entry must be enabled for CrossLock operation and it must have the correct Switchboard ID/ MAC address of the far-end unit.

In the special circumstance where the default CrossLock port of UDP 9001 can not be used (e.g. several MultiRack codecs sharing a single IP address), then manual CrossLock connections get extra complex. For more information on these settings, refer to the Technote “Making CrossLock connections on non-standard Ports” on www.comrex.com.

Note: Comrex Devices must be running at least Firmware version 4.5 to designate MAC Address suffixes when making Manual Crosslock Remote Entries.
MAKING CONNECTIONS WITH SWITCHBOARD

In order to use Switchboard, users must first have an account with the server. This account can be obtained by contacting Comrex at 978-784-1776 / 800-237-1776, or by emailing techies@comrex.com / info@comrex.com. Only one account is required for each group of codecs. Once a user name and password is provided, navigate to switchboard.comrex.com in a web browser. When first accessing Switchboard, there will be a notice stating that no units have been added to the account. Clicking on Add New Unit will open a dialogue box that asks for the Ethernet MAC address of the MultiRack.

When adding MultiRack to your Switchboard Account, each instance must be added individually as a separate device. The primary Ethernet MAC address is used here only for MultiRack instance #1. Each instance must be added to Switchboard individually. Instances 2-5 use the same MAC address with a suffix (e.g. -2, -3, -4, and -5) added to designate the instance.

As an example, if the primary Ethernet MAC address is 00:01:40:c0:0d:15, that’s the ID input for MultiRack instance #1. Instance #2 is added as 00:01:40:c0:0d:15-2, instance #3 uses -3, etc.

![MultiRack Instance Entries in Switchboard](image-url)

FIGURE 75 MULTIRACK INSTANCE ENTRIES IN SWITCHBOARD